
FACULTY OF SCIENCE

New signature schemes
based on UOV
with smaller public keys

Ward BEULLENS

Supervisor: Prof. B. Preneel
Co-supervisor: Alan Szepieniec

Thesis presented in

fulfillment of the requirements

for the degree of Master of Science

in Mathematics

Academic year 2016-2017

c© Copyright by KU Leuven

Without written permission of the promotors and the authors it is forbidden to re-
produce or adapt in any form or by any means any part of this publication. Requests
for obtaining the right to reproduce or utilize parts of this publication should be ad-
dressed to KU Leuven, Faculteit Wetenschappen, Geel Huis, Kasteelpark Arenberg 11
bus 2100, 3001 Leuven (Heverlee), Telephone +32 16 32 14 01.

Preface

This thesis is submitted for the degree of Master of Science in Mathematics. The research
described in this thesis was conducted during the academic year 2016-2017 at the COSIC
research group at the department of electrical engineering (ESAT) of the KU Leuven.
Conducting the research and compiling the results into this thesis has been a thrilling but
arduous experience. Luckily, I could count on the help of a number of people whenever
help was needed.

I would like to thank my supervisor Prof. B. Preneel and the researchers at the COSIC
group who helped me, including W. Castryck and F. Vercauteren. I am particularly grate-
ful to Alan Szepieniec, who co-supervised this thesis, for his help throughout the year and
the many fruitful conversations we had that where indispensable for my research. Thanks
also to my friends and family for their encouragement and support.

Part of the contents of this thesis was presented in the following publication:

• Alan Szepieniec, Ward Beullens, Bart Preneel. MQ signatures for PKI. In Eighth
International Conference on Post-Quantum Cryptography. Springer, 2017.

A different paper was submitted to the Selected Areas in Cryptography (SAC) conference
and is currently being reviewed:

• Ward Beullens, Bart Preneel. Field lifting for smaller UOV public keys. Submitted
to Selected Areas in Cryptography - SAC 2017. Springer, 2017.

i

ii

Abstract

Shor’s quantum algorithm threatens to break nearly all public-key cryptography deployed
today. Multivariate cryptography is one of the major candidates for providing fast and se-
cure public-key cryptography in a post-quantum world. However, multivariate cryptosys-
tems have prohibitively large public keys. This thesis addresses this issue by proposing
two new variants of the Unbalanced Oil and Vinegar signature scheme. The first scheme
realizes dramatically smaller public keys (15 times smaller) by lifting the UOV map to
a much larger extension field, where system solving is harder. The second scheme uses
techniques from hash based cryptography in order to obtain tiny public keys, at the cost
of larger signatures. The security of the second scheme reduces to the security of UOV
in the Quantum Random Oracle Model. Software implementations of both signature
schemes are made in ANSI C. The aim is to submit these signature schemes to the NIST
Post-Quantum Crypto project.

iii

iv

Contents

1 Introduction 1
1.1 What are signature schemes? . 1
1.2 Why do we need new signature schemes? 2
1.3 Contributions of this thesis . 3

2 Preliminaries 5
2.1 Cryptographic hash functions . 5

2.1.1 Random Oracle Model . 6
2.1.2 Quantum Random Oracle Model 7

2.2 Trapdoor functions . 7
2.3 Hash-and-Sign signature schemes . 8
2.4 Digital signature forgery attacks . 8
2.5 Insecurity functions . 10
2.6 Merkle trees . 11

3 The UOV signature scheme 15
3.1 MQ signature schemes . 15
3.2 MQ-Problem and IP-Problem . 18

3.2.1 MQ-Problem . 18
3.2.2 Classical algorithms . 18
3.2.3 Quantum algorithms . 19
3.2.4 IP-Problem . 20

3.3 Description of the UOV signature scheme 20
3.3.1 Key and signature sizes of the UOV scheme 23

3.4 Equivalent secret keys . 23
3.5 Classical Attacks against UOV . 26

3.5.1 Direct attack . 26
3.5.2 UOV attack . 27
3.5.3 UOV reconciliation attack . 29
3.5.4 Hash collision attack . 30

3.6 Quantum attacks against UOV . 30
3.6.1 Direct attack and Reconciliation attack 30
3.6.2 UOV attack . 31
3.6.3 Hash Collision attacks . 31

3.7 Reducing public key size by generating part of it with a PRNG 31
3.7.1 The modified key generation algorithm 31
3.7.2 Results . 33

v

vi CONTENTS

3.8 Speeding up key-pair generation . 33

4 Reducing key sizes by lifting the UOV map 35
4.1 Description of the new scheme . 35
4.2 Security analysis of the new scheme . 36

4.2.1 Direct attack . 36
4.2.2 Key recovery attack . 37
4.2.3 UOV attack . 37
4.2.4 UOV Reconciliation attack . 37

4.3 Choice of parameters . 38
4.3.1 Trade-off . 38

4.4 Implementation and results . 39
4.5 Application to other MQ signature schemes 41

5 Reducing key sizes using Merkle trees 43
5.1 Description of the new scheme . 43

5.1.1 Pseudocode . 44
5.2 Security analysis of the new scheme . 46

5.2.1 Multiple-target second-preimage resistance 47
5.2.2 Multiple-target second-preimage one-wayness 47
5.2.3 Multiple moving targets One-wayness 48
5.2.4 Reduction to the original UOV scheme 49

5.3 Small improvements . 52
5.4 Choice of parameters . 53
5.5 Implementation and results . 54

6 Multiple Signatures for each message 57
6.1 Description of the new scheme . 57
6.2 Security Analysis of the new scheme . 58

6.2.1 AMQ Problem . 58
6.2.2 AMQ attack . 59

6.3 Choice of Parameters . 60
6.4 Implementation and results . 60
6.5 Application to other MQ signature schemes 61

7 Conclusion 63
7.1 Lifted UOV . 63
7.2 UOVHash . 64

A Software implementation 69

Chapter 1

Introduction

1.1 What are signature schemes?

In today’s world the Digital Revolution has enabled billions of people to communicate
with each other across the globe at near-light speed. This development has increased
quality of life, created millions of jobs and massive amounts of wealth. However, the new
technologies also introduce new vulnerabilities. Criminals trick people into revealing their
passwords or into installing malicious software in order to plunder their bank accounts
or monitor their communications. How to know who you can trust on the world wide
web? Digital signatures can provide a way to be certain that whoever you are talking to
is really who they claim to be.

To understand a digital signature it is useful to make the comparison with its ancestor:
the wax seal. When a medieval lord or lady received a letter from the king, he or she
could check the wax seal on the envelope to be sure that the letter was indeed signed with
the royal stamp. Under the assumption that it is impossible to replicate a stamp and that
the royal stamp was still in the possession of the king this would mean that the letter was
really sent by the king. Moreover, if the seal was not broken he or she would be sure that
the letter had not been opened before, so the contents of the letter has not been changed.
Modern digital signature schemes operate on the same principles. Anyone who wants to
sign a document needs a digital “stamp” which he has to keep secret, this “stamp” is
called the secret key. In medieval times, if someone wanted to check the validity of a seal
he or she has to know what the seal is supposed to look like. In the modern version a
verifier also needs a piece of information in order to be able to verify a signature, this
piece of information is called the public key since it is public knowledge.

A digital signature scheme consists of three algorithms.

• The key generation algorithm randomly generates a secret key sk and a correspond-
ing public key pk.

• The signature generation algorithm uses the secret key to produce a valid signature
s for any document d.

• Given d,s and pk the validation algorithm checks if s is a valid signature for the
document d.

1

2 CHAPTER 1. INTRODUCTION

A good signature scheme guarantees the following properties for signatures it decides
are valid:

• Authenticity : The document was signed by the user who knows the secret key.

• Integrity : The document has not been tampered with by anyone after it was signed.

• Non-repudiation of origin : Since the signer of the document is the only one in
possession of the secret key he can not deny having signed the document at some
later time.

Today, signature schemes are used for a wide variety of applications. For example,
if you download or update an app via the Google Play Store or the Apple app store
the downloaded data is verified with a digital signature. This way you can be sure
that the app you download is really in the same state as the version of the app that
was signed by the developer. This means no malware was added to the app after the
app was signed. However it is still possible that it was already there when the signing
happened of course. (Maybe even intentionally put there by the designer of the app.) Most
software updates done today are verified with a digital signature in this way. Moreover,
the security of all secure communication protocols rely on some kind of authentication.
After all, it is useless to be able to communicate securely if you can’t be certain who you
are communicating with. This authentication can be provided with a digital signature.
Also, in some countries, including the EU countries, legal contracts can be signed with
a digital signature instead of a physical signature, which can be very convenient when
doing business with partners across the globe.

1.2 Why do we need new signature schemes?

Since digital signature schemes are so widely used there is a constant search for digital
signature schemes that require less memory and fewer computational resources. This is
particularly important in applications that run on smart cards or applications such as
pacemakers where the energy supply is very limited but where the stakes are very high.
Another challenge for cryptographers comes from the advances in quantum computing.

The idea of a quantum computer, a computer that relies on quantum mechanical phe-
nomena to perform its calculations, is often attributed to the famous Nobel prize-winning
physicist Richard Feynman. He noticed that some quantum mechanical systems appear
to be extremely difficult to simulate on a classical computer, so he proposed that it might
be possible to simulate these systems with another quantum mechanical system, a quan-
tum simulator [20]. Later, people realized that it might be possible to use this theoretical
device to calculate other things that are hard to compute for a classical computer. The
idea of the quantum computer was born. Since then a lot of effort has been put in devel-
oping this idea and many breakthroughs have been made. On a theoretical level quantum
algorithms have been found that are exponentially faster than the best known classical
algorithm that solve the same problem. The most famous example of this exponential
speed-up is Shor’s algorithm [31], which is able to efficiently factor large integers and
compute discrete logarithms in any group. On a practical level physicists and engineers

1.3. CONTRIBUTIONS OF THIS THESIS 3

have succeeded in building small quantum computers and run small algorithms on them.
It remains to be seen if it is possible to scale up those quantum computers to useful sizes
and if so, if this will be possible within a decade or within centuries.

The security of most digital signature schemes in use today rely on the hardness of
computing discrete logarithms, factorizing large semiprimes and related problems. These
are all problems that can be solved efficiently once large enough quantum computers are
built. Therefore, the advances in quantum computing pose a serious threat to the majority
of the digital signature schemes in use today as well as many other cryptographic systems
such as public key encryption, key agreement protocols and zero-knowledge identifica-
tion schemes. This is why cryptographers are looking for quantum resistant algorithms.
There are a number of promising branches of so-called post-quantum cryptography, one
of which is based on the hardness of finding solutions to systems of multivariate quadratic
equations over a finite field Fq. This is known as the MQ-problem. A short analysis
of the hardness of this problem will be given in Sect.3.2.1. It is this branch, known as
MQ-crypto that this thesis will focus on.

Very recently NIST, the American National Institute for Standards and Technology,
has started a search for post-quantum cryptographic algorithms with the goal to stan-
dardize a selection of them [1]. The institute has issued a call for proposals. Submissions
will be analyzed for security and efficiency. Hopefully, at the end of this process, which is
projected to last six to eight years, some post-quantum algorithms will be standardized.
Previous NIST standardization projects have resulted in the Advanced Encryption Stan-
dard AES and the SHA-3 hashing algorithm. These algorithms are now used extensively
by the US government and extremely many other users. It is noteworthy that both the
AES and the SHA-3 competitions were won by Belgian submissions.

1.3 Contributions of this thesis

In this thesis we develop two new signature schemes with the goal of submitting them
to the NIST post-quantum crypto standardization project. In the first three chapters we
introduce the reader to some preliminaries and we give an introduction to MQ signature
schemes, and the UOV signatures scheme in particular. The new signature schemes we
develop are based on the well studied signature scheme UOV, which has withstood attacks
since its formulation in 1999 with some minor parameter changes. The largest problem
with UOV schemes is that they have very large public and secret keys. An important
step in mitigating this problem was taken by Petzoldt et al. [28]. They reduced the
public key size by a factor 8 without affecting the security of the scheme. We propose two
different signature schemes that reduce the key sizes even further, each in its own way.
Both signature schemes work over large finite fields.

In chapter 4 we develop a first new signature scheme that dramatically reduces the
public key sizes by using public keys and secret keys over F2. The key idea is to lift
the keys to a large extension field F2r where solving polynomial systems is more difficult.
The resulting signature scheme is very competitive with the best post quantum signature
schemes in terms of signature size, key sizes and efficiency.

4 CHAPTER 1. INTRODUCTION

In chapter 5 we develop a second signature scheme which is a modified version of
UOV which relies on Merkle trees, a technique used in hash-based cryptography. With
this modification we obtain tiny public keys at the cost of larger signatures. The combined
size of the public key and the signature is roughly a factor 2.5 smaller than the best MQ
signature schemes (UOVrand and RainbowLRS2 [28]). We are able to prove rigorously
that this scheme is at least as secure as the original UOV scheme in the quantum random
oracle model. Also, it is possible to apply the modification we used on the UOV scheme
on other MQ signature schemes to significantly reduce the combined size of a signature
and a public key.

In chapter 6 we adapt the signature scheme of chapter 5 to reduce the size of the
signatures even further. The adapted signature scheme is no longer provably as secure
as the original UOV signature scheme. Instead, its security depends on the hardness of
a new problem, the Approximate MQ problem, which is a natural generalization of the
MQ problem. This adapted version of the idea of chapter 5 also be applies to other MQ
signature schemes.

Chapter 2

Preliminaries

2.1 Cryptographic hash functions

The cryptographic hash function is an extremely important tool for many applications
in cryptography. A hash function is a function that assigns to any message of arbitrary
length a hash value (also referred to as a message digest) of fixed length. A hash function
H : X∗ → Xn is called cryptographically secure if the following properties are satisfied:

• One-wayness (also known as preimage resistance) : Given a hash value h ∈ Xn it
is hard to find a message m ∈ X∗ such that H(m) = h.

• Second preimage resistance : Given a message m it is hard to find a different
message m′ such that H(m) = H(m′).

• Collision resistance : It is hard to find two messages m 6= m′ such that H(m) =
H(m′).

These rather informal properties can be formalized using games. A game is played by
an adversary. We say that a hash function satisfies one of the properties if no adversary
can win the associated game with a non-negligible probability. For example, the game
associated to the second preimage resistance is defined in Alg. 2.1. A hash function H (or
rather a family of hash functions indexed by a security parameter n) is second preimage
resistant if for any efficient adversary A (i.e. the running time of A is polynomial in n),
the probability that A wins the SPR game is negligible, meaning that this probability
decreases faster than the inverse of any polynomial. More precisely, for any polynomial
p(n) ∈ R[n] there exists an N such that for all n > N

Pr[A wins SPR(H,A)] < 1/p(n) .

Note that the hash function H is indexed by a security parameter n, although in practice
this is almost never mentioned explicitly.

It should be understood that the hardness of a problem depends on the model of
computation that is being used. For example, some problems (or rather families of prob-
lems parametrized by a security parameter), such as integer factorization, are believed
to be hard for classical computers, but can be efficiently solved by a quantum computer.
Therefore it is possible that a certain hash function is secure against classical adversaries,
but not against quantum adversaries.

5

6 CHAPTER 2. PRELIMINARIES

Algorithm SPR

input: H : D → R — A hash function from domain D to range R.
A — An adversary

output: Win / Lose — Whether A wins or loses the game

1: m
$← D . choose m uniformly random from D

2: h← H(m)
3: m′ ← A(m,h)
4: if m′ 6= m and H(m′) = h then
5: return Win
6: else
7: return Lose
8: end if

Alg. 2.1: The game associated the the second preimage resistance property.

Currently, there are no functions which are proven to be cryptographically secure hash
functions. It is not even known whether one-way functions exist. The existence of a one-
way function would prove that P6=NP, thereby solving the famous problem in Computer
Science, which is also a Clay Institute Millennium Prize Problem [13]. However, there are
many practical functions for which no known efficient algorithms find (second) preimages
or collisions. One such function is SHA-3 (secure hashing algorithm 3). This algorithm is
was standardized by NIST, the US National Institute of Standards and Technology, after
it won the NIST Hash function competition.

2.1.1 Random Oracle Model

A function H : D → R which is drawn uniformly from the set of all functions from
D to R would be an ideal hash function. Unfortunately such a function is impossible
to implement. Nevertheless, we use the concept of a random oracle that ’computes’ a
randomly chosen function. An algorithm can make use of a random oracle by sending it
inputs and receiving the results. A random oracle is one-way, second preimage resistant
and collision resist, since the best way to find a preimage (or second preimage or collision)
is just to query the oracle at a large number of points and hope that the oracle returns the
right value. This has a very small success probability if the range of the random oracle is
large. Random oracles even have much stronger properties, that are of practical use, and
that hash functions don’t necessarily have. For example, evaluations of a random oracle
at different values are independent of each other. Even though random oracles cannot be
implemented they are frequently used in the design of cryptographic schemes. It is often
possible to prove that some cryptographic scheme that uses a hash function is secure if
the hash function that is used were replaced by a random oracle. If this is the case the
scheme is called secure in the random oracle model. Strictly speaking, this does not prove
anything about the security of the actual scheme and indeed, there are schemes that are
proven secure in the random oracle model, but are insecure when a real hash function is
used instead of a random oracle [11]. Still, if a scheme is proven secure in the random
oracle model this is considered to be evidence for the security of the scheme.

2.2. TRAPDOOR FUNCTIONS 7

2.1.2 Quantum Random Oracle Model

A random oracle can only be evaluated at one input at once. That is, a user queries the
oracle at an input M ∈ D, and the oracle returns f(M) ∈ R, where f is a fixed randomly
chosen function D → R. In the context of quantum computation this is not a realistic
idealization of a hash function anymore because on a quantum computer a hash function
H can be evaluated in superposition. This means that given a superposition

∑
i ci|mi〉 the

evaluation of the hash function at this superposition
∑

i ci|mi〉|H(mi)〉 can be calculated.
Like the classical random oracle, a quantum random oracle is an oracle that computes a
randomly chosen function. The difference is that the quantum oracle can answers queries
that are superpositions. That is, when queried at a superposition

∑
i ci|mi〉 the quantum

random oracle returns
∑

i ci|mi〉|f(mi)〉, with f a fixed randomly chosen function. If
a cryptographic scheme is proven to be secure when the hash functions are replaced by
quantum random oracles the scheme is called secure in the quantum random oracle model.

Since a quantum random oracle is more powerful than a classical random oracle it
could be that a cryptographic scheme that is secure in the random oracle model is not
secure in the quantum random oracle model. Boneh et al. show that this indeed occurs
and that security in the quantum random oracle model is strictly stronger than security
in the random oracle model [8].

2.2 Trapdoor functions

A trapdoor function is a collection of one-way functions fk : Dk → Rk parametrized
by k ∈ K, where K is the space of public keys. For every public key k, there is a
corresponding trapdoor tk that allows the function fk to be inverted efficiently. More
precisely there exists the following efficient algorithms :

• Key generation algorithm : Produces a random key k and corresponding trap-
door tk.

• Evaluation algorithm : Given a key k and a value x it computes the evaluation
fk(x).

• Inversion algorithm : Given a key k, the trapdoor tk and an evaluation e for
which there exists a value x such that fk(x) = e, the algorithm computes a value y
such that fk(y) = e.

Example. An important example of a trapdoor function is the RSA-function. Given a
public key of the form k = (e, n), where n is the product of two large primes and e coprime
to φ(n), the function is defined as

fk(x) = xe mod n .

The trapdoor is given by a number d such that de ≡ 1 mod φ(n). The inverse is then

f−1k (x) = xd mod n .

Note that similar to the concept of hash functions, the concept of trapdoor functions
depends of the model of computation that is being used. It is shown by Peter Shor that
there are efficient quantum algorithms that invert the RSA-function, so it can no longer
be called a trapdoor function in the context of quantum computers.

8 CHAPTER 2. PRELIMINARIES

2.3 Hash-and-Sign signature schemes

A hash function and a trapdoor function can be combined into a signature scheme. Sup-
pose we have a hash function H : {0, 1}∗ → R which maps bitstrings to a range R and
a trapdoor function from a signature space S to the same range fk : S → R for all keys
k ∈ K. Then we can formulate the following algorithms.

• Key generation algorithm : Use the key generation algorithm for the trapdoor
function to get (k, tk). The public key of the signature scheme is k, the private key
is tk.

• Signature generation algorithms : Given a message M ∈ {0, 1}∗ calculate
h = H(M). Use the trapdoor tk to calculate the signature s = f−1k (h).

• Signature verification algorithm : Given a message M and a signature s, cal-
culate h = H(M) and h′ = fk(s). The signature is valid if and only if h = h′.

This is a general framework for constructing signature schemes known as the hash-
and-sign paradigm that is used by many signature schemes, including the RSA signature
scheme and the UOV signature scheme.

The reader might wonder why the hashing is required. It seems easier to use the
trapdoor function to sign the message directly. That is, a valid signature for a message
M would be an s such that fk(s) = M . This has two problems, which are solved using
the hash function. The first problem is that with this approach we can only sign mes-
sages which lie in the range of the trapdoor function, whereas in practice we want to be
able to sign any message. The hash function solves this problem by converting bitstrings
to a hash value of fixed length. A second problem is that it is trivial to produce valid
message-signature pairs by choosing a random signature s and evaluating M = fk(s) to
find a corresponding message. In the hash-and-sign paradigm this is not possible. If an
attacker takes a random s, he can calculate h = fk(s), but in order to make this into a
valid message-signature pair the attacker should find a message M such that H(M) = h,
which is hard for hash functions.

Nearly all digital signature schemes follow the hash-and-sign paradigm, including the
popular DSA (Digital Signature Algorithm) algorithm, most MQ signature schemes and
the first of the new signature schemes that are proposed in this thesis.

2.4 Digital signature forgery attacks

In this section we explain different types of attacks against digital signature schemes.
Each type of attack is formalized by a game G, played by an adversary A. We say that a
signature scheme is secure against attacks of some type X, if for every efficient adversary
A, the probability that A wins the game associated to X is negligible. The different types
of attacks specify a goal of the attack and the attack model.

2.4. DIGITAL SIGNATURE FORGERY ATTACKS 9

Different goals of an attack:

1. Universal Forgery : Given an arbitrary message M , the goal of the attack is to
produce a valid signature for M .

2. Selective Forgery : The adversary himself chooses a message M before the start of
the attack, then the goal of the attack is to forge a valid signature for M

3. Existential Forgery : The goal of the attack is to produce any valid message-
signature pair.

The difference between a selective and an existential forgery is a bit subtle. In a se-
lective forgery the adversary has to select a message M before the start of his attack. An
existential forgery is potentially easier, because the adversary can decide which message
to forge a signature for during the execution of the attack. These goals are ordered from
harder to easier. It is clear that if an attacker can preform a universal forgery, he can
also do selective forgery, and if an attacker can do a selective forgery, he can also do an
existential forgery.

Different attack models :

1. Key-only attack : The adversary only knows the public key.

2. Known message attack : The adversary knows the public key and a list of valid
signature-message pairs. (The message the adversary needs to forge a signature for
is not in the list)

3. Chosen message attack : The adversary knows the public key and he can ask for
signatures for any message he chooses. (Except for the message the adversary needs
to forge a signature for.)

The attack models are ordered from more difficult to easier. If an adversary can do a
Key-only attack he can also do known message attacks. If an adversary can do a known
message attack, he can also do chosen message attacks.

The strongest form of security is security against the easiest goal (Existential forgery)
with the easiest attack model (Chosen message attack). This is known as Existential
Unforgeability under Chosen Message Attack (EUF-CMA). Other types of attacks have
similar abbreviations, e.g. UUF-KOA. We describe the game which formalizes the EUF-
CMA attack in Alg. 2.2.

Remark. In a chosen message attack, a quantum adversary is not allowed to ask for
messages in superposition to be signed. This is so because the CMA attack models a
situation where an attacker is able to trick a victim into signing some documents. It is
not realistic that an attacker can trick a victim into signing a document in superposition.

10 CHAPTER 2. PRELIMINARIES

Algorithm EUF-CMA Game

input: (GenerateKeys,Sign,Verify) — A signature scheme
A — An adversary

output: Win / Lose — Whether A wins or loses the game

1: (pk, sk)← GenerateKeys()
2: Communicate pk to A
3: Messages ← empty list
4: while A queries a signature for the message M do
5: Messages.append(M)
6: s←Sign(M, sk)
7: communicate s to A
8: end while
9: A returns a signature message pair (s,M)

10: if M ∈ Messages then
11: return Lose
12: else if Verify(s,M) then
13: return Win
14: else
15: return Lose
16: end if

Alg. 2.2: The game associated to the EUF-CMA attack

2.5 Insecurity functions

The insecurity function InSecp(s; t, q) denotes the maximum probability with which an
adversary that runs in time t and that makes at most q queries wins the game associated
to property p of the primitive s. For example, InSecEUF-CMA(OUV, t, q) is the maximal
probability with which any adversary that makes q queries and that runs in time t can
win the EUF-CMA game against the Unbalanced Oil and vinegar signature scheme. A
different example is InSecSPR(H; t, q) which is the maximal probability with which any
adversary which runs in time t and makes q queries to H can forge a second preimage.
If we omit the time variable t from the function, we mean the maximal probability with
which an adversary with an unbounded amount of time can win the game associated to
property p.

2.6. MERKLE TREES 11

H0,0 = H(H1,0H1,1)

H1,0 = H(H2,0H2,1) H1,1 = H(H2,2, H2,3)

H2,0 = H(Data0) H2,1 = H(Data1) H2,2 = H(Data2) H2,3 = H(Data3)

Figure 2.1: Binary Merkle tree of height 2.

2.6 Merkle trees

A Merkle tree or hash tree is a tree structure where each internal node (i.e. non-leaf node)
contains the hash value of its children and each leaf node is the hash of some piece of
data. This way, the root of the Merkle tree can authenticate a large number of data values.

One use of Merkle trees is the authentication of large amounts of data. For exam-
ple, consider the situation where a movie or some piece of software is downloaded via
a peer-to-peer network such as BitTorrent. In such a case the data is divided in small
packages that are downloaded separately, and each package can be provided by a different
computer in the network. Not all computers in the network can be trusted, some may try
to send corrupted data. Therefore each package has to be verified. To do this, a user first
acquires a Merkle root from a trusted party, in the BitTorrent case the Merkle tree root
is included in the torrent file, which you get from a “trusted” party such as PirateBay.
Then each downloaded package contains a path of the Merkle tree that validate the data
in the package. For example, consider the simple case where the data is divided in four
packages, labeled from Data1 up to Data4 and a binary tree of height 2 is used. The tree
is displayed in Fig. 2.1. Suppose we download the second package, the download includes
Data2 as well as the values H2,0 and H1,1. To validate Data2 we consecutively calculate
H2,1 = H(Data1), H1,0 = H(H2,0H2,1) and H0,0 = H(H1,0H1,1). Then the root H0,0 is
compared to the root value we have acquired from the trusted party. If the two roots
match we can be sure that the Data1 has not been tampered with, because due to the
nature of hash functions, it is very hard for an opponent to produce a Merkle path that
connects the corrupted data with the true Merkle root.

In general, a binary Merkle of height h can be used to validate up to 2h pieces of data.
To validate a data piece h extra hash values have to be included with the data. Now we
describe the algorithms associated to Merkle trees more formally. To this end, we denote
the hash value of the i-th node (starting from 0) at depth d by Hd,i. The children of the
i-th node at depth d are the 2i-th and 2i+1-th nodes at depth d+1, so with this labeling
we have

Hd,i =

{
H(Hd+1,2iHd+1,2i+1) if d < h

H(Datai) if d = h
.

12 CHAPTER 2. PRELIMINARIES

This relation translates readily into a recursive algorithm for calculating the hash value
of an arbitrary node of the Merkle tree. This algorithm is presented in Alg. 2.3. In order
to verify a piece of data we have to include a list of hash values that allow a verifier to
verify a path from the piece of data to the root of the Merkle tree. Starting from the
bottom of the tree, if we are in a left child of the a node we have to include the hash value
of the right node and vice versa. This means that if we want to verify Hd,i we need to
include Hd,i⊕1, where ⊕ stands for the bitwise XOR operation. Then, in order to verify
the next value Hd−1,bi/2c we need to include Hd−1,bi/2c⊕1. Continuing like this we travel
up the tree until we have a complete list of hash values. This algorithm is described more
formally in Alg. 2.5. To verify the i-th piece of data we need to calculate all the values
Hd,i, Hd−1,bi/2c, . . . all the way up to H0,0. And check whether this last value is equal to
root of the Merkle tree. This is described in Alg. 2.6

Algorithm CalculateNode

input: Data0, · · · ,Data2h−1 — The data values of the Merkle tree
d — The depth of the node
i — The node whose hash value to calculate

output: Hd,i — The hash value of the i-th node at depth d

1: if d = h then
2: return H(Datai)
3: else
4: Hd+1,2i ← CalculateNode(Data0, · · · , Data2h−1, d+ 1, 2i)
5: Hd+1,2i+1 ← CalculateNode(Data0, · · · , Data2h−1, d+ 1, 2i+ 1)
6: return H(Hd+1,2iHd+1,2i+1)
7: end if

Alg. 2.3: Algorithm that calculates the hash value of a node of a Merkle Tree.

Algorithm CalculateMerkleRoot

input: Data0, · · · ,Data2h−1 — The data values of the Merkle tree

output: The root of the Merkle tree

1: return CalculateNode(Data0, · · · ,Data2h−1,0,0)

Alg. 2.4: Algorithm that calculates the root of a Merkle tree

2.6. MERKLE TREES 13

Algorithm OpenMerklePath

input: Data0, · · · , Data2h−1 — The data values of the Merkle tree
i — The index of the leaf of the Merkle tree to open

output: A list of Hash values required to validate a leaf of the Merkle tree

1: List ← empty list of length h
2: for depth from h to 1 do
3: i← i⊕ 1 . Toggles last bit of i
4: List[depth] ← CalculateNode(Data0, · · · , Data2h−1,depth , node)
5: i← bi/2c
6: end for
7: return List

Alg. 2.5: Algorithm for calculating the list of hash values required to validate a leaf.

Algorithm VerifyMerklePath

input: i — The index of the leaf to verify a path for
Datai — The leaf to verify a path for
List — A list of Hash Values
Root — Root of the Merkle tree

output: True if the Merkle path is valid, False otherwise

1: CurrentHash ← H(Datai)
2: for depth from h to 1 do
3: if i is even then
4: CurrentHash ← H(CurrentHash List[depth])
5: else
6: CurrentHash ← H(List[depth] CurrentHash)
7: end if
8: i← bi/2c
9: end for

10: return CurrentHash = Root

Alg. 2.6: Algorithm that verifies the validity of a Merkle path

14 CHAPTER 2. PRELIMINARIES

Chapter 3

The UOV signature scheme

The UOV or Unbalanced Oil and Vinegar digital signature scheme is a modified version
of the original (balanced) oil and vinegar signature scheme that was proposed by Patarin
in 1997 [27]. UOV belongs to the family of MQ-digital signature schemes, this means
that the security of UOV relies on the hardness of finding solutions to certain quadratic
systems. Since the first proposal of the oil and vinegar scheme in 1997 much more has
been learned about the complexity of solving quadratic systems. These new insights have
revealed that some of the parameter sets that were proposed originally are not secure.
However, with the right set of parameters UOV remains one of the most promising MQ
signature schemes. In this chapter we will first explain how MQ signature schemes work
in general. Then we will explain the specifics of the UOV signature scheme and the known
attacks against it.

3.1 MQ signature schemes

Roughly speaking, MQ signatures are an instantiation of the hash-and-sign paradigm
which use a trapdoor functions which are multivariate quadratic polynomial maps. At the
heart of any MQ signature scheme there are two quadratic polynomial maps P ,F : Fnq →
Fmq that are isomorphic in the sense that there exist linear isomorphisms S : Fnq → Fnq
and T : Fmq → Fmq such that

P = S ◦ F ◦ T .

The polynomial map F is chosen in such a way that it is possible to find a solution s
to the system F (s) = x for any x ∈ Fmq in a reasonable amount of time. During the
key generation phase the polynomial maps P ,F and the linear maps T ,S are generated.
The polynomial map P is the public key. The factorization S ◦ F ◦ T is the secret key.
Signing a message M happens as follows: first a message digest H(M) = h ∈ Fmq is
calculated using some hash function H. Then we solve the system P(s) = h to find a
valid signature s. This can be done using the factorization P = S ◦F ◦T since the linear
maps T and S are easily inverted and finding an inverse of F is easy by assumption. In
order for the scheme to be secure it should be the case that only someone who knows the
factorization of P , can invert P . Moreover it should be so that given P it is unfeasible
to find the factorization P = S ◦ F ◦ T . (Or any other factorization that can be inverted
easily.) If that is the case then signing a message is only possible if the secret key is known.

15

16 CHAPTER 3. THE UOV SIGNATURE SCHEME

T F S

P
public knowledge

private knowledge

signature verification

signature generation

Figure 3.1: Schematic representation of multivariate quadratic cryptosystems.

Now we describe a MQ signature scheme more formally. Like any digital signature
scheme an MQ signature scheme consists of 3 algorithms. The key generation algorithm,
signature generation and signature validation algorithms are shown in Alg. 3.1, Alg. 3.2
and Alg. 3.3 respectively.

Algorithm MQGenerateKeys

input: Random bits to choose F ,S and T
output: A key pair (P , (S,F , T))

1: F ← chosen randomly from F, a family of polynomial quadratic functions that
can be inverted easily.

2: S ← A random invertible affine map Fqm → Fqm
3: T ← A random invertible affine map Fqn → Fqn
4: P ← S ◦ F ◦ T
5: return (P , (S,F , T))

Alg. 3.1: The generic MQ Signature generation Algorithm

3.1. MQ SIGNATURE SCHEMES 17

Algorithm MQSign

input: (S, T ,F) — The public key
M — A message to sign

output: s ∈ Fnq — A signature for the message M

1: h← H(M)
2: h′ ← S−1(h)
3: s′ ← a solution for F(s′) = h′

4: s← T −1(s′)
5: return s

Alg. 3.2: The generic MQ signature generation algorithm

Algorithm MQVerify

input: P — A public Key
M — A message
s — A candidate-signature

output: True if s is a valid signature for M , False otherwise

1: h← H(M)
2: h′ ← P(s)
3: if h = h′ then
4: return True
5: else
6: return False
7: end if

Alg. 3.3: The generic MQ signature verification algorithm

18 CHAPTER 3. THE UOV SIGNATURE SCHEME

3.2 MQ-Problem and IP-Problem

The security of an MQ signature scheme relies on the hardness of two problems, the
MQ-problem and the IP-problem. We give a brief discussion of these problems here.

3.2.1 MQ-Problem

It should be difficult for an attacker to solve the system P(s) = h for any given h, other-
wise they would be able to sign any message. This problem is known as the MQ-problem,
which stands for Multivariate Quadratic.

MQ Problem. Given a quadratic polynomial map P : Fnq → Fmq over a finite field
Fq, find x ∈ Fnq that satisfies P(x) = 0.

It is known that the MQ problem is NP-hard [26]. Therefore it is unlikely that there
are polynomial time algorithm that solve the hardest instances of the MQ problem. The
problem is also believed to be hard on average in the case n ≈ m. Only exponential time
algorithms are known to solve random instances of the problem for these parameters.

Systems with n = m are called determined systems; these are the most difficult sys-
tems to solve. When n < m a system is called overdetermined, and when n > m the
system is called underdetermined. Finding a solution for an underdetermined system with
n = αm can be reduced to finding a solution of a determined system with only m+1−bαc
equations [34]. This means that as a system becomes more underdetermined it becomes
easier to solve. This fact will become important in the security analysis of UOV.

3.2.2 Classical algorithms

The best known classical algorithms to solve the MQ-problem for generic determined sys-
tems over finite fields use the hybrid approach [6, 7], which combines an exhaustive search
with Gröbner basis computations. In this approach k variables are fixed to random values
and the remaining n− k variables are found with a Gröbner basis algorithm such as F4,
F5 or XL. If no assignment to the remaining n− k variables exists that solves the system,
the procedure starts again with a different guess for the first k variables. On average, we
require roughly qk Gröbner basis computations until a solution is found. As a result, the
optimal value of k decreases as q increases. To estimate the complexity of Gröbner basis
algorithms we need the concept of degree of regularity. Several non-equivalent definitions
of the degree of regularity are in circulation. We will use the definition introduced by
Bardet in her PhD thesis [2].

Definition. For a polynomial system f1, · · · , fm with finitely many solutions the degree
of regularity dreg with respect to some monomial order ≺ is defined to be the smallest
integer such that all monomials of total degree dreg are the leading monomial of some
polynomial in 〈f1, · · · , fm〉.

3.2. MQ-PROBLEM AND IP-PROBLEM 19

The complexity of the F5 algorithm is given by

CF5(n, dreg) = O

((
n+ dreg
dreg

)ω)
,

where 2 ≤ ω < 3 is the constant in the complexity of matrix multiplication. Therefore
the complexity of the hybrid approach is

CHybridF5(n,dreg ,k) = O

(
qk
(
n− k + dreg(k)

dreg(k)

)ω)
, (3.1)

where dreg(k) stand for the degree of regularity of the system after fixing the values of k
variables.
Determining the degree of regularity for a specific polynomial system is difficult, but for
a certain class of systems, called semi-regular systems, it was shown by Bardet that the
degree of regularity can be deduced from the number m of equations and the number n
of variables [2]. For semi-regular systems the degree of regularity is the degree of the first
term in the power series of

Sm,n(x) =
(1− x2)m

(1− x)n

with a non-positive coefficient. This gives a practical method to calculate the degree of
regularity of any semi-regular system. Empirically, polynomial systems that are randomly
chosen have a very large probability of being semi-regular and it is conjectured that most
systems are semi-regular systems. For the definition and the theory of semi-regular sys-
tems we refer to chapter 3 of the PhD thesis of Bardet [2].

For completeness, we mention that for small dense polynomial systems over F2 the
most efficient way of finding solutions is by an exhaustive search [9]. Using Grey codes
it is possible to do an exhaustive search for the solutions of a polynomial system of m
equations in n variables with approximately log2(n)2n+2 bit operations.

3.2.3 Quantum algorithms

Currently, there are no specialized quantum algorithms that solve polynomial system over
finite fields. Grover search can be used in a brute force search for solutions. This would
yield a solution in O(qm/2), which is slower than classical algorithms that use the hybrid
approach. (An exception being the case q = 2, where the best classical algorithms have
a complexity O(20.79n) [3].) Applying Grover search naively to the MQ problem is not
that successful, but Grover’s algorithm can be used to speed up the brute force part of
the hybrid approach, giving a quadratic speedup for this part of the attack. The new
complexity would be

CHybridF5(n,dreg ,k) = O

(
qk/2

(
n− k + dreg(k)

dreg(k)

)ω)
, (3.2)

where the difference with (3.1) is that we have the factor qk/2 instead of qk. However
it should be noted that this approach requires running qk/2 Gröbner basis computations
sequentially on a quantum computer. This would be an incredible feat because even for

20 CHAPTER 3. THE UOV SIGNATURE SCHEME

moderately sized polynomial systems this would require gigabytes worth of qubits and
days of computation. Also, note that the gains of parallelizing Grover search grow only
with the square root of the number of independent computers used, instead of a linear
growth for the classical brute force search [36]. Nevertheless, in the security analysis of
the signature schemes proposed in this thesis we will be cautious and assume that these
kinds of attacks on the MQ problem are possible and we will make our parameter choices
accordingly. This has the additional benefit of providing a thick safety margin against
classical attacks.

3.2.4 IP-Problem

In order for an MQ signature scheme to be secure it should be infeasible for an attacker
to factorize P into S ◦ F ◦ T . If an attacker is able to do so he has recovered the secret
key and he or she can then sign any message in exactly the same way a legitimate owner
of the secret key would. For some MQ cryptographic schemes the polynomial map F is
the same for every key pair and hence publicly known. These systems include Square [12]
and `IC [15]. For these systems the problem is known as the IP-problem.

IP-Problem. (for Isomorphism of Polynomials) Given two polynomial systems P
and F that are guaranteed to be isomorphic, find 2 affine transformations S, T such that
P = S ◦ F ◦ T .

A graph-theoretic algorithm is known that solves this problem over finite fields of q
elements in O(qn/2) where n is the number of variables [10]. However for specific (non-
random) choices of F the problem can be much easier.

Not all MQ cryptosystems uniquely specify the system F . For example, during the
key generation phase of the UOV signature scheme, which we will describe later in this
chapter, F is chosen randomly from some large family of polynomial systems that are
easily inverted. For those kinds of MQ schemes we need a more general form of the IP-
Problem.

EIP-Problem. (for Extended Isomorphism of Polynomials) Given a polynomial sys-
tem P that is guaranteed to be isomorphic to a polynomial system in some class of
polynomial systems F, find 2 affine transformations S, T and a polynomial system F ∈ F
such that P = S ◦ F ◦ T .

Not much can be said about the EIP-Problem in general. It turned out to be very
easy in the case of the original oil and vinegar scheme [24], however after changing the
parameters it is believed that the scheme is now safe against key recovery attacks. The
modified scheme is known as Unbalanced Oil and Vinegar or UOV.

3.3 Description of the UOV signature scheme

In the UOV signature scheme the polynomial map F consists of m randomly chosen
UOV polynomials. The variables are partitioned into two sets, the first v = n − m

3.3. DESCRIPTION OF THE UOV SIGNATURE SCHEME 21

variables x1, · · · , xv are called vinegar variables, the last m variables xv+1, · · · , xn are the
oil variables. Given this partition a UOV polynomial is a polynomial of the form

f(x) =
v∑
i=1

n∑
j=i

αi,jxixj +
n∑
i=1

βixi + γ .

In other words, a UOV polynomial is a quadratic polynomial in which no quadratic terms
appear with two oil variables. The oil variables and the vinegar variables are not fully
mixed, which is where the names come from. However it is not really a good name be-
cause in reality oil mixes with oil and vinegar mixes with vinegar but no mixing happens
between oil and vinegar, and this is not what happens in UOV polynomials. A better
name would have been hen variables and rooster variables because hens can get along
with hens and roosters, but two roosters start a fight when they appear in the same term.
Moreover, we will see later that it is essential for the security of UOV that there are more
hen variables than rooster variables, which is natural for a flock of chickens.

A UOV system is a polynomial system that consists of UOV polynomials. UOV sys-
tems can be solved very easily. Suppose we want to find s ∈ Fnq such that F(s) = x
for some x ∈ Fmq . One simply chooses v random values for the vinegar variables and
substitutes them into the equations. Since the system contains no quadratic terms with
two oil variables the remaining system contains only linear equations. We get a system
of m linear equations in the m oil variables, so we can solve this system rapidly to find
the values of the oil variables. It might happen that the linear system has no solutions,
in that case we can simply try again with different values for the vinegar variables.

When using the UOV scheme a number of parameters has to be chosen, these are

• q, the size of the finite field that is used.

• m, the number of equations in the polynomial systems and also the number of oil
variables

• n, the total number of variables. The value of n and the value of m determine the
value of v = n−m, the number of vinegar variables.

• H, a hash function F∗2 → Fmq .

The key generation, signature generation and signature verification algorithms are
displayed in Algs. 3.4,3.5 and 3.6

Remark. In contrast to the general framework of MQ signature schemes we have not
chosen an affine map S that scrambles the different polynomials of the central map F .
Having an S would not affect the distribution of the public keys because any affine bijection
S acts as a permutation on the set of UOV systems. Therefore we can always choose
S = Im without influencing the security of the scheme. Also, it is easy to see that a
translation x 7→ x+ c for come constant vector c ∈ Fmq acts as a permutation on the set of
UOV systems, so without losing any security we can pick T to be a linear transformation
instead of an affine transformation.

22 CHAPTER 3. THE UOV SIGNATURE SCHEME

Algorithm UOVGenerateKeys

input: Random bits to generate F and T
output: P — A public key

(F , T) — A corresponding secret key

1: F ← a randomly chosen UOV system
2: T ← a randomly chosen linear map Fnq → Fnq
3: P ← F ◦ T
4: return P and (F , T)

Alg. 3.4: The UOV key pair generation algorithm

Algorithm UOVSign

input: (F , T) — A public key
M — A message to sign

output: s — A signature for the message M

1: h← H(M)
2: while No solution s′ to the system F(s′) = h is found do
3: Assign random values to the first v entries of s′

4: Substitute these values into F(s′) = h to get a linear system L(o) = h.
5: if L(o) = h has solutions then
6: Calculate an assignment o to the oil variables such that L(o) = h
7: Assign the entries of o to the last m entries of s′

8: end if
9: end while

10: s← T −1(s′)
11: return s

Alg. 3.5: The UOV signature generation algorithm

Algorithm UOVVerify

input: P — A public key
M — A message
s — A candidate–signature

output: True if s is a valid signature for M , False otherwise

1: h← H(M)
2: h′ ← P(s)
3: if h = h′ then
4: return True
5: else
6: return False
7: end if

Alg. 3.6: The UOV signature verification algorithm

3.4. EQUIVALENT SECRET KEYS 23

3.3.1 Key and signature sizes of the UOV scheme

The public key is a quadratic map P : Fnq → Fmq , so it consists of m quadratic polynomials
in n variables. Each quadratic polynomial contains n(n + 1)/2 quadratic terms, n linear
terms and one constant term. Each coefficient requires dlog2(q)e bits to represent, so the
total number of bits required to represent a public key is

m

(
n(n+ 1)

2
+ n+ 1

)
dlog2(q)e .

A private key consists of the UOV map F : Fnq → Fmq and a linear map T ∈ GL(q, n).
Each polynomial in the UOV map has v(v+1)/2 quadratic terms that contain two vinegar
variables and vm quadratic terms that contain one vinegar variable and one oil variable.
Therefore the size of a public key is equal to(

m

(
v(v + 1)

2
+ vm+ n+ 1

)
+ n2

)
dlog2(q)e bits.

A signature s is a vector of n elements, so the size of a signature is ndlog2(q)e bits. For
secure parameter choices the public and private keys are very large, ranging from several
hundreds of kilobytes to megabytes. We refer to Table 3.1 for some secure parameter
choices and corresponding public key sizes.

Remark. When working over a field of characteristic 2 terms of the form cx2i are linear,
so they need not be represented as quadratic terms in the keys. This reduces the size of
the public key by mn coefficients, and the private key by mv coefficients.

3.4 Equivalent secret keys

For any UOV public key P there is a multitude of UOV systems F that are equal to P
up to some change of coordinates T . In other words, for any public key there are many
secret keys. This fact can be useful for the designer of a UOV-like scheme, because some
private keys could be stored more efficiently and be faster to calculate with than other
keys. This idea is explained in Sect. 3.8. The notion of equivalent keys is also important
for attackers of a UOV scheme because it suffices to find only one of the equivalent keys
to be able to forge signatures. Therefore it is important to have a good understanding
of how many equivalent keys there are and how the different keys are related. This is
worked out by Wolf and Preneel in [35]. We will present a reformulation of their results
here, but with different proofs based on the arguments in the thesis of Petzoldt [28].

Definition. For a homogeneous quadratic polynomial f in n variables over a field k. If
Mf is a n×n matrix such that f(x) = xTMfx for all x ∈ kn, we call this matrix a matrix
representation of f .

Remark. It is easy to see that every homogeneous quadratic polynomial has a matrix
representation. It is not unique, but it is unique up to addition of a skew symmetric
matrix, i.e. a matrix A such that A> = −A.

24 CHAPTER 3. THE UOV SIGNATURE SCHEME

With this representation we can restate the definition of a UOV polynomial system. A
quadratic polynomial f is a UOV polynomial if and only if there is a matrix representation
of the quadratic part of f of the form

Mf =

(
M1 M2

M3 0m×m

)
.

Property. Let f be a quadratic polynomial in n variables over a field k and let T be a
linear transformation kn → kn. Let Mf be a matrix representation for the quadratic part
of f and let MT be the matrix representation of T . Then we have that

Mf◦T = M>
TMfMT

is a matrix representations of the quadratic parts of f ◦ T .

Theorem 1. Let F be a UOV system and let E be a linear transformation with matrix
representation

ME =

(
Av×v 0v×m
Bm×v Cm×m

)
(3.3)

with invertible submatrices A and C. Then we have that F ◦ E is a UOV system. There-
fore, if E is invertible and P and (F , T) form a UOV key pair then (F ◦E , E−1 ◦ T) is an
equivalent private key for P.

Proof. The fact P = F ◦E ◦E−1 ◦ T is trivial. We only have to show that F ◦E is a UOV
system. Let Q be the quadratic part of a UOV polynomial. Then, as explained above, Q
has a matrix representation of the form

MQ =

(
Q1 Q2

Q3 0m×m

)
.

We have a matrix representation for Q ◦ E which is given by

M>
EMqME =

(
A> B>

0m×v C>

)(
Q1 Q2

Q3 0m×m

)(
A 0v×m
B C

)
=

(
A>Q1A + A>Q2B + B>Q3A A>Q2C

C>Q3A 0m×m

)
.

Therefore composing a UOV system with E gives another UOV system.

Corollary 1. For any public UOV key there are at least qvm
∏v−1

i=0 (qv− qi)
∏m−1

i=0 (qm− qi)
corresponding secret keys.

Proof. When choosing E in the previous theorem there are |GL(q, v)| choices for A ,
|GL(q,m)| choices for C and qmv choices for B. Using the fact that

|GL(q, n)| =
n−1∏
i=0

(qn − qi)

we obtain the above formula.

3.4. EQUIVALENT SECRET KEYS 25

Theorem 2. If (P , (F , T)) is a UOV key pair such that the upper left v × v matrix of
the matrix representation of T is invertible, then there is an equivalent secret key (F ′, T ′)
such that T ′ has the matrix representation

MT =

(
Iv T′

0m×v Im

)
,

with some v ×m matrix T’.

Proof. Let P and (F , T) be such a UOV key pair. We write the matrix representation of
T as

MT =

(
T1 T2

T3 T4

)
,

where T1,T2,T3 and T4 are v × v, v ×m,m × v and m ×m-matrices respectively. By
assumption we have that T1 is invertible. If this is the case we can consider the linear
map E1 with matrix representation

ME1 =

(
Iv 0v×m

T3T
−1
1 Im

)
.

According to the previous theorem we know that (F ◦ E1, E−11 ◦ T) is an equivalent key
for P . The new linear transformation E−1 ◦ T has the matrix representation(

Iv 0
−T3T

−1
1 Im

)(
T1 T2

T3 T4

)
=

(
T1 T2

0 T4 −T3T
−1
1 T2

)
.

This shows that T4 − T3T
−1
1 T2 is invertible. So we can define a second linear transfor-

mation E2 with matrix representation(
T1 0
0 T4 −T3T

−1
1 T2

)
.

According to the previous theorem we know know that (F ◦ E1 ◦ E2, E−12 ◦ E−11 ◦ T) is
an equivalent private key. This private key has a linear transformation with matrix
representation(

T−11 0
0 (T4 −T3T

−1
1 T2)

−1

)(
T1 T2

0 T4 −T3T
−1
1 T2

)
=

(
Iv T−11 T2

0 Im

)
,

which finishes the proof.

Corollary 2. Usually a UOV key pair is generated with the invertible map T : Fqn →
Fqn chosen randomly. Then we have that the upper v × v matrix is invertible with a
high probability, so with a large probability there is an equivalent secret key with matrix
representation of T of the form (

Iv T
0m×v Im

)
.

26 CHAPTER 3. THE UOV SIGNATURE SCHEME

Remark. Contrary to what is mentioned in [35] this theorem does not hold for all UOV
keys. A counterexample in the case m = v is given by a public key P consisting of
m quadratic equations that only contain the oil variables. These equations have matrix
representations of the form (

0 0
0 A

)
.

A secret key for this public key is given by (F , T) with F a UOV system that consists of m
equations that only contain the vinegar variables and the linear transformation that swaps
the oil variables and the vinegar variables. However, this UOV key pair has no equivalent
key of the form of the previous theorem because for any choice of T we have(

I 0
T> I

)(
0 0
0 A

)(
I T
0 I

)
=

(
0 0
0 A

)
.

This cannot be the matrix representation of a UOV polynomial since the lower right m×m
matrix is not skew symmetric.

3.5 Classical Attacks against UOV

3.5.1 Direct attack

In a direct attack an attacker tries to forge a signature s for a message M by solving the
polynomial system P(s) = H(M). An attacker can use the trick of Thomae and Wolf [34]
to reduce this problem to finding a solution of a polynomial system with m+ 1− bn/mc
equations. The best known algorithm to solve this is the hybrid approach [6] which was
briefly described in Sect. 3.2.1. Empirically, the systems that have to be solved behave
like semi-regular systems [19], therefore we calculate the degree of regularity and use this
to estimate of the complexity of the hybrid approach. This is essentially the same method
as the method used by Petzoldt [28] to estimate the complexity of a direct attack against
UOV, the only difference being that we have used an updated estimate of the complexity
of F5. In Petzoldt’s thesis it was shown that the estimated complexity of a direct attack
agrees very well with the measured complexity of a direct attack against small instances
of UOV.

Example. We will estimate the complexity of a direct attack against UOV with the pa-
rameter set (q = 31,m = 52, v = 104); this set is proposed in [28] as a set that achieves
128-bit security. Using the trick of Thomae we can reduce finding a solutions to finding a
solution of a determined system with 52+1−b(52+104)/52c = 50 equations. We assume
this system to be semi-regular. If we fix k extra variables the degree of regularity is then
the degree of the first term in the power series of

S50,50−k(x) =
(1− x2)50

(1− x)50−k

which has a non-positive coefficient. For k = 0 this is we have S50,50(x) = (1 + x)50, so
the degree of regularity is 51. For k = 1 we have

S50,49(x) = 1 + 49x+ 1175x3 + · · ·+ 4861946401452x25 − 4861946401452x26 +O(x27)

3.5. CLASSICAL ATTACKS AGAINST UOV 27

where all the omitted terms have positive coefficients, so the degree of regularity is 26.
For k = 2 and k = 3 we can do the same calculation to get that the degree of regularity
is 23 and 21 respectively. We can now use (3.1) to estimate the complexity of the hybrid
approach. We prefer to error on the side of caution, so we have chosen ω = 2 for the
value of the linear algebra constant. For k equal to 0, 1, 2 and 3 this is equal to(

50 + 51

51

)2

≈ 2194.7 ,

31

(
50− 1 + 26

26

)2

≈ 2137.8 ,

312

(
50− 2 + 23

23

)2

≈ 2132.3 ,

313

(
50− 3 + 21

21

)2

≈ 2129.6

respectively. Continuing this for even higher values of k we eventually see that the optimal
value of k is 6, the corresponding degree of regularity is 16 and the complexity of the direct
attack is 2123.9.

In the example we concluded that the complexity of the attack is less than 2128 which
was supposed to be the security level of the parameter set (q = 31,m = 52, v = 104)
according to [28]. Even though we have used roughly the same method of estimating the
complexity as the method used in in [28] we arrive at a slightly different value because
we have used a tighter bound on the complexity of F5 coming from an improved analysis
of the hybrid approach [7].

With this method we can calculate the minimal number of equations that is needed
in a determined semi-regular system in order to guarantee that the complexity of finding
a solution is larger than a targeted security level. For quantum attackers, we can follow
the same method with (3.2) instead of (3.1) for estimating the complexity of the hybrid
approach. The result of these calculations for the security levels of 2128 and 2256 for
different finite fields of size up to q = 2100 are plotted in Fig. 3.2.

3.5.2 UOV attack

In the original version of the Oil and Vinegar scheme proposed by Patarin it was suggested
to use the scheme with v = m, that is, with the same number of vinegar variables as oil
variables. It turns out that this choice is not safe. This version of the scheme was broken
by Kipnis and Shamir [24]. Roughly, they showed that it is possible for an attacker to
find the inverse image of the oil variables under the map T . This is enough information
to find an equivalent secret key, so this breaks the scheme. This approach generalizes for
the case v > m, but it gets exponentially harder as v−m grows larger, it has a complexity
of O(qv−mm4) [23]. Typically one chooses v = 2m or v = 3m, then the UOV attack is not
feasible anymore.

28 CHAPTER 3. THE UOV SIGNATURE SCHEME

0 20 40 60 80 100

Value of log
2
(q)

20

40

60

80

100

120

140

160
M

in
im

a
l
v
a

lu
e

 o
f

m

256-bit quantum security

256-bit security

128-bit quantum security

128-bit security

Figure 3.2: The minimal size of a determined semi-regular system to reach 128-bit of
security and 256-bit security for different finite fields.

We will briefly describe the original attack, which works in the case v = m. For a
more detailed version we refer to [24] and for the case v > m we refer to [23]. We consider
two subspaces of F2m

q .

Definition. The vinegar subspace, denoted by V is the subspace of F2m
q that is spanned

by the first m unit vectors. Equivalently the vinegar subspace is the subspace of all vectors
in F2m

q of which the last m entries are all zero.

Definition. The oil subspace, denoted by O is the subspace of F2m
q that is spanned by

the last m unit vectors. Equivalently the oil subspace is the subspace of all vectors in F2m
q

of which the first m entries are all zero.

The goal of the attack is to find the inverse image of O under T . If an attacker can
do this he can efficiently sign any message. Indeed, the attacker can simply pick any
linear transformation T ′ that maps O to T −1(O). Then we have that T ◦ T ′ maps the oil
subspace onto itself, so the matrix representation of T ◦ T ′ is of the form (3.3). We have

P = F ◦ (T ◦ T ′) ◦ T ′−1. (3.4)

According to Theorem 1 we have that F ◦ (T ◦ T ′) is a UOV system, so (P ◦ T ′, T ′−1) is
an equivalent secret key which can be used to sing any message.

Now we explain how an attacker can find T ′−1(O) efficiently. At our disposal we
have the polynomials fi of the system P , so we have m matrices Pi that represent the
quadratic part of pi respectively. We know that there exist some unknown private key
(F , T). Therefore there is a matrix T and matrices Fi that represent the quadratic part
of UOV polynomials such that, Pi = T>FiT. We will use the following lemma.

3.5. CLASSICAL ATTACKS AGAINST UOV 29

Lemma 1. Let F be the matrix representation of the quadratic part of a UOV polynomial.
Then, the linear map with matrix representation F sends the oil subspace into the vinegar
subspace. If F is an invertible matrix, then F−1 sends the vinegar subspace to the oil
subspace.

Proof. We can assume that F has the form(
F1 F2

F3 0m×m

)
,

with F1,F2 and F3 matrices of size m ×m. It is trivial to check that a vector of the oil
subspace is mapped into the vinegar subspace. Since the oil subspace and the vinegar
subspace have the same dimension the inverse map F−1 sends the vinegar space to the oil
space if F is invertible.

The crucial observation is that if a matrix Pi and Pj are invertible then P−1i Pj sends
T −1(O) to itself. (We say that T −1(O) is an eigenspace of P−1i Pj) Indeed, it is easily
checked that

P−1i Pj(T −1(O)) = T−1F−1i T>
−1

T>FjT)(T −1(O))

= T−1F−1i Fj(O)

= T−1F−1i (V)

= T −1(O) .

Therefore T −1(O) is the common eigenspace of all matrices of the form P−1i Pj with
Pi and Pj invertible matrices. The common eigenspace of a large set of matrices can be
computed efficiently, so this completes the attack.

3.5.3 UOV reconciliation attack

Similar to the UOV attack, the UOV reconciliation attack tries to find an equivalent
secret key. The attack was first described in [16]. Here we give a very short summary of
the attack. The attack is based on Corollary 2, which says that for a public key P there
is with a very high probability a private key (F , T) such that the matrix representation
of T is of the form

MT =

(
Iv T
0 Im

)
.

This means that an attacker only has to find the v × m matrix T to get an equivalent
key. For any polynomial pi in the public polynomial system P we consider a matrix
representation Mi for the quadratic part of pi. If (F , T) is a valid secret key, we have
that pi ◦ T −1 = fi is a UOV polynomial with a matrix representation(

Fi1 Fi2

Fi3 Fi4

)
:=

(
Iv 0
−T> Im

)
Mi

(
Iv −T
0 Im

)
.

Since fi is a UOV polynomial we know that the m ×m matrix Fi4 has to be skew sym-
metric. Therefore for each i ∈ {1, . . . ,m} we have m(m − 1)/2 equations of the form

30 CHAPTER 3. THE UOV SIGNATURE SCHEME

(Fi4)i,j = −(Fi4)j,i. The entries of Fi4 are quadratic functions of the entries of T, so in
total we have m2(m − 1)/2 quadratic equations in the vm entries of T, so we can solve
this system to find T.

The resulting system of equations is far from random and it is much easier to solve
than a random system of equations. Ding et al. argue that the complexity of this attack
for UOV variants with v ≤ m (such as Rainbow and TTS) is the same as the complex-
ity of solving a random system of m equations in v variables [16]. For the case v > m
we can use this to derive a lower bound on the complexity of the reconciliation attack.
Adding equations to an overdetermined system only makes solving it easier, so the UOV
reconciliation attack on a UOV scheme with m equations with v > m vinegar variables
is at least as difficult as a UOV reconciliation attack on a system with v equations and
v vinegar variables. This complexity is the same as the complexity of solving a random
system of v equations in v variables.

We conclude that an UOV reconciliation attack on a UOV system with m equations
and v > m vinegar variables is at least as difficult as solving a random system of v
variables in v equations. (But it is in general probably much more difficult.) So, for the
typical choice of v = 2m or v = 3m the UOV reconciliation attack is much more difficult
than attacking the system P(s) = H(M) directly.

3.5.4 Hash collision attack

If an attacker knows a hash collision, i.e. two messages m1 and m2 such that H(m1) =
H(m2) he could possibly convince the holder of the secret key to produce a signature s
form m1, but s would also be a valid signature for m2. So, the signature is not secure
in the EUF-CMA model. This attack could also lead to real world security threats. For
example, the message m1 could be “I donate 5 dollars to X”, while the second message
could be “I donate 1000 dollars to Y”. A cunning adversary could trick someone into
donating five dollars to a charity, and make him unknowingly donate a large sum to some
evil organization.

This is a general attack which works against any signature which follows the hash-
and-sign paradigm (see Sect. 2.3). To protect against this attack it should be impossible
to find hash collisions. In the random oracle model this is achieved if the output of the
hash function has at least twice the amount of bits as the desired security level.

3.6 Quantum attacks against UOV

3.6.1 Direct attack and Reconciliation attack

The most expensive parts of the direct attack and reconciliation attack are solving systems
of polynomials over finite fields. In Sect. 3.2.3 we discussed that Grover search could be
used to speed up the algorithms that solve the MQ problem. Therefore, if we want the
scheme to be secure against quantum attackers we will need to increase the size of the
public map P and the number of vinegar variables.

3.7. REDUCING PUBLIC KEY SIZE BYGENERATING PARTOF ITWITH A PRNG31

3.6.2 UOV attack

The UOV attack tries to reconstruct the oil subspace. It does this by repeatedly picking a
random linear combination of the polynomials in the public system and doing some cheap
linear algebra operations which yield a nonzero vector in the oil subspace with probability
qv−m. Quantum computers could speed up this attack. A Grover search can be used to
find the right linear combinations, thereby reducing the complexity of the attack from
qv−mm4 to q(v−m)/2m4.

3.6.3 Hash Collision attacks

There is a popular myth that the complexity of the Brassard-Høyer-Tapp quantum al-
gorithm for collision finding in a κ-bit hash is O(2κ/3), which would be less than the
O(2κ/2) which is the complexity for classical computers. This myth is debunked by Bern-
stien [4] who argues that the complexity the Brassard-Høyer-Tapp quantum algorithm
is also O(2κ/2), and that the quantum algorithms benefit less from parallelization than
classical algorithms employing the rho method. Therefore, perhaps surprisingly, quantum
computers are not cost-effective for finding hash collisions, so quantum computers will
not help an adversary to preform a hash collision attack.

3.7 Reducing public key size by generating part of it

with a PRNG

In this section we present a method by Petzoldt that drastically reduces the size of the
public keys of the UOV signature scheme [28]. The idea is to generate a large part of
the coefficients of the public system P with a pseudo-random number generator (PRNG).
Then we can include the seed for the random number generator in the public key instead
of all the generated coefficients, reducing the size of the public key. It is clear that we can-
not hope to generate the entire public map P with a PRNG, because a randomly chosen
map has a very low probability of being a UOV public key. However, it is possible to gen-
erate a part of P with a PRNG and calculate the rest of P such that it is a valid public key.

Usually we first choose F and T and compute P = F ◦ P , but this way we cannot
control the coefficients of P . To make the idea work Petzoldt proposed another approach:
First we choose T and a large part of the coefficients of P . Then we solve the system
P = F ◦ T to find the coefficients of F , and the remaining coefficients of P .

3.7.1 The modified key generation algorithm

Let D = n(n+ 1)/2 denote the total number of coefficients for a homogeneous quadratic
polynomial in n = m + v variables. We can partition the coefficients in a set of D1 =
v(v+1)/2+mv coefficients corresponding to monomials which contain at least one vinegar
variable, and a set of D2 = m(m + 1)/2 coefficients, which correspond to monomials in
the oil variables. Let P,F ∈ Fm×Dq be the Macaulay matrices of P and F respectively,
and let T be the matrix representation of T , then the equation P = F ◦ T corresponds

32 CHAPTER 3. THE UOV SIGNATURE SCHEME

to the matrix equation

P = FA ,

where A is the D ×D-matrix whose entries are given by

Aij,rs =

{
Tr,i ·Ts,i if i = j

Tr,i ·Ts,j + Tr,j ·Ts,i if i 6= j
.

Note that we index the rows and columns of A by pairs ij, where the ij-th row/column is
the row/column corresponding to the monomial xixj. We use a lexicographic ordering of
the pairs to order the columns and rows. Then we have that the first D1 rows/columns of
the matrix correspond to the monomials that contain at least one vinegar variable, and
the last D2 correspond to monomials in the oil variables. We split up the matrices P,F
and A in parts. Let P1,F1 ∈ Fm×D1

q and P2,F2 ∈ Fm×D2
q consist of the first D1 and last

D2 columns of P and F respectively. Since F is a UOV map we know that F2 = 0. Let
A11 be the upper left D1×D1-submatrix of A, A12 the upper right D1×D2-submatrix of
A, A21 the lower left D2×D1-submatrix of A and A22 the lower right D2×D2-submatrix
of A. The we have the equation

(
P1 P2

)
=
(
F1 0

)
·
(

A11 A12

A21 A22

)
.

Petzoldt showed empirically that for a random choice of T the square matrix A11 has
a very large probability of being invertible. This means that with high probability we can
solve P1 = F1A11 for F1. Now we can describe the key generation algorithm.

Key generation algorithm:

Algorithm PetzoldtKeyGen

input: Random bits to choose s and T
output: (s,P2) — A public key

(F1, T) — A corresponding private key

1: Randomly choose a seed s for a prng
2: Generate P1 using s
3: while F1 is not found do
4: Randomly choose T
5: Calculate A11

6: Try to solve P1 = F1A11 for F1

7: end while
8: Calculate A12

9: Calculate P2 = F1A12

10: return (s,P2) and (F1, T)

Alg. 3.7: An improved Key generation algorithm

3.8. SPEEDING UP KEY-PAIR GENERATION 33

3.7.2 Results

With this approach the public key size is decreased by m(v(v+ 1)/2 + ov) field elements,
at the negligible cost of including the seed for the random number generator. The public
key size is now mo(o+ 1)/2 log2(q) + |seed|. Table 3.1 shows that this method drastically
reduces the size of the public key. A disadvantage of the method is that during the key-
pair generation phase we have to solve a very large system of linear equations, which
makes the key generation algorithm quite slow. A solution to this problem is given in the
next section.

Table 3.1: The effect of Petzoldt’s method on the public key size

security level q (o, v) public key (kB)
public key with

Petzoldt’s method (kB)
100 bits 28 (36,72) 207 23
128 bits 28 (47,94) 460 52
192 bits 28 (72,144) 1648 185
256 bits 28 (98,196) 4150 464

Instead of inserting a pseudo-randomly generated submatrix into the Macaulay matrix
of the public key it is also possible to use this approach to insert a more structured
submatrix. Such an approach can still reduce the size of the public key and have the
additional benefit of speeding up the verification process [30].

3.8 Speeding up key-pair generation

As explained in Sect. 3.4 there is for each public key a large number of possible secret
keys. In this section we show that it is possible to pick a particularly nice secret key such
that the size of the secret key is slightly smaller, and the key-pair generation and signature
generation algorithms are much faster. The idea was introduced by Czypek [14], but here
we develop the idea independently and we describe it in more detail.

The idea is to take T of the form of Theorem 2, that is we take a T with matrix
representation of the form (

Iv T
0 Im

)
,

where T is a randomly chosen v × m-matrix. This approach of choosing T instead of
taking T uniformly at random does not affect the security of the scheme. This is so be-
cause Theorem 2 says that for a random public key there is a large probability that there
exists a private key with T of this form. That means that if there is an attack against
the modified signature scheme, that attack would work on nearly all public keys of the
original UOV scheme, so the modified scheme is at least as secure as the original scheme.

A first advantage of this approach is that we only have to store a v×m-matrix instead
of a n×n-matrix, so the size of the private key gets smaller. However, the size of T is often
negligible in comparison with the size of F , so this does not have a very important impact.

34 CHAPTER 3. THE UOV SIGNATURE SCHEME

More importantly, this choice of T makes A11 an upper unitriangular matrix, which
means that we can solve the linear system F1 ·A11 = P1 for F1 very fast by using forward
substitution. More precisely we have A11 = ID1 +B+C, where B,C ∈ FD1×D1

q are sparse
strictly upper triangular matrices defined as

Bij,rs =

{
Ts,j−v if s ≤ v < j and r = i

0 otherwise
,

Cij,rs =

{
Tr,j−v if v < j and s = i

0 otherwise
.

This results in Alg. 3.8 for solving F1 ·A11 = P1 for F1.

Algorithm FindF1

input: P1 — Part of Macaulay matrix of P
T — A v ×m matrix

output: F1 — The Macaulay matrix for F

1: F1 ← P1

2: for i from 1 to v do
3: for j from 1 to o do
4: for s from i to v do
5: Subtract Ts,j times the is-th col of F1 from the ij-th col of F1

6: end for
7: for r from 1 to i do
8: Subtract Tr,j times the ri-th col of F1 from the ij-th col of F1

9: end for
10: end for
11: end for
12: return P1

Alg. 3.8: Algorithm for solving F1 ·A11 = P1 for F1.

The complexity of this algorithms is O(v2m2) (that is v2m for doing the for loops
times m for subtracting the columns). When v is proportional to m this makes the
complexity of the algorithm O(m4). In contrast, the previous algorithm required solving
m linear systems of D1 equations in D1 variables, this has complexity O(mD3

1) = O(m7).
In practice the new algorithm is several orders of magnitude faster.

Chapter 4

Reducing key sizes by lifting the
UOV map to a large extension field

In this section we will work with UOV over a finite field F2r of characteristic 2. The
parameter r is quite important for the security of the scheme, the signature size and
key sizes. Figure 3.2 shows that by choosing a larger value of r we can put a smaller
number of equations in the system and still reach the same level of security. Since the
number of field elements in the public key and secret key is O(m3) it is very desirable to
have a small value of m. However, since it costs r bits to store a field element r should
not be too big either. We must make a trade off between large r and large m. How-
ever, in this section we propose a scheme that gets some security benefits of a high value
of r, but has a public and private key with coefficients in F2, greatly reducing the key sizes.

A paper presenting the contents of this chapter was submitted to the Selected Areas
of Cryptography (SAC) conference and is currently being reviewed.

4.1 Description of the new scheme

As usual, the public key of the scheme represents a quadratic system over F2r , given by

P = F ◦ T .

When we want to sign a message m we use a hash function to generate a digest of mr bits
which represents a vector x of m elements of F2r . Then we use the knowledge of the pri-
vate key to solve the system P(s) = x to get a valid signature s. However, the difference
with standard UOV is that we now choose all the coefficients of F ,P and all entries of T
in F2. Therefore the key generation process is identical to the key generation process of
a regular UOV scheme over F2. In particular we can use the approach of Petzoldt [28] as

explained in Sect. 3.7 to generate the first v(v−1)
2

+ ov columns of B, the Macaulay matrix

of P , using a random number generator and use T to deduce F and the remaining o(o−1)
2

columns of B. Contrary to the key generation, the signature generation and verification
still happen over entire field F2r as usual.

35

36 CHAPTER 4. REDUCING KEY SIZES BY LIFTING THE UOV MAP

This way the public key only consists of a seed for the random number generator and
mo(o+1)

2
bits, representing the last part of B. The public key is approximately a factor r

smaller than if we were to use the regular UOV scheme over F2r since we only use one
bit to represent each field element instead of r bits. Furthermore, we can choose r to be
much larger than what would otherwise be the optimal value of r. This in turn allows for
a smaller value of m (See Fig. 3.2), reducing the public key size even more.

Remark. Though we have presented this scheme with a finite field of characteristic 2
and with the subfield F2 ⊂ F2r , it is easy to see that we can use this scheme with any
field extension of finite fields K ⊂ K ′. In such a scenario we generate a key pair with
coefficients in the small field K, and the signing and verifying is done with elements of
the big field K ′.

4.2 Security analysis of the new scheme

4.2.1 Direct attack

In a Direct attack we try to forge a signature for a certain message M by trying to find
a solution s ∈ Fn2r for the system F(s) = H(M). The best known method for this is the
hybrid approach as described in Sect. 3.2.1.

When we do a direct attack against the new scheme the polynomials of the system
that needs to be solved has all coefficients in F2 except those of the constant monomials,
because those coefficients come from the message digest. We claim that this does not
significantly increase the efficiency of a hybrid approach. It has been noticed by Faugère
and Perret [19] that the polynomials systems that result from fixing ≈ v variables in
a UOV system tend to behave like semi-regular systems. The degree of regularity of a
quadratic semi-regular system is given by the degree of the first term in the power series
of

(1− x2)m

(1− x)n

with a non-positive coefficient. In particular the degree of regularity does not depend on q
for semi-regular systems. Therefore we expect the degree of regularity for a direct attack
against the modified UOV scheme to be identical to the degree of regularity of an attack
against the regular UOV scheme. Therefore it seems likely that a Gröbner basis compu-
tation against the modified scheme is not significantly more efficient than a Gröbner basis
computation against regular UOV with the same parameters. This heuristic argument
is confirmed by the experimental data in Table 4.1. There we see that a direct Gröbner
basis attack is slightly faster against the modified scheme than against the original UOV
scheme, but only by a constant factor. Even though the Gröbner basis calculation is done
over F2r , the largest part of the arithmetic only involves the field elements 0 and 1, so the
arithmetic is faster than with generic elements of F2r . We believe that this is where the
difference observed in Table 4.1 comes from. If we do the same experiment with a smaller
extension field such as F28 there is no observed difference between the running time of a
direct attack against a regular UOV scheme and our modified scheme.

4.2. SECURITY ANALYSIS OF THE NEW SCHEME 37

Remark. In a direct attack one usually fixes ≈ v variables randomly to make the system a
slightly overdetermined system. In our experiments we have fixed these variables to values
in F2 to make sure that we do not introduce linear terms with coefficients in F2r instead
of F2 in the case of the modified UOV scheme.

Table 4.1: Running time of a direct attack against the regular UOV scheme over F264 and
the modified UOV scheme, with the MAGMA implementation of the F4 algorithm.

(m,v) regular UOV scheme modified UOV scheme difference
(7,14) 0.23 s 0.13 s -43 %
(8,16) 1.18 s 0.60 s -49 %
(9,18) 6.36 s 3.15 s -50 %
(10,20) 44.3 s 22.2 s -50 %
(11,22) 286.8 s 147.3 s -48 %

4.2.2 Key recovery attack

In contrast to a direct attack, the modified scheme is significantly more vulnerable to a
key recovery attack. In a key recovery attack we usually try to find a linear map T ∈ Fn×n2r

such that T transforms the public key system into a UOV system. Given such a T an
attacker can sign any document in the same way a legitimate user would. It is clear that
in our modified scheme the attacker can restrict his search to T ∈ Fn×n2 . Therefore a key
recovery attack on our modified UOV scheme is equivalent to a key recovery attack on
a regular UOV scheme over F2. In particular, the complexity of key recovery attacks is
independent of r. We will investigate how this affects the feasibility of the UOV attack
and the UOV Reconciliation attack.

4.2.3 UOV attack

The UOV attack attempts to recover an equivalent private key by searching for the oil
subspace (see Sect. 3.5.2). This attack has a complexity of qv−o−1 · n4. Since a UOV
attack on our scheme is equivalent to a UOV attack over F2, we have that the complexity
of a UOV attack against our scheme is 2v−o−1 · n4.

4.2.4 UOV Reconciliation attack

The UOV reconciliation attack attempts to recover a private key (F , T) with the matrix
representation of T of the form (

Iv×v T′

0o×v Io×o

)
by solving an overdetermined quadratic system. (see Sect. 3.5.3)

A lower bound to the complexity of the UOV reconciliation attack is given by the
complexity of solving a random quadratic system of v variables and v equations over
F2. When solving systems over F2 it is more efficient to do a smart exhaustive search
instead of a Gröbner basis approach [9]. It is possible to do an exhaustive search for the

38 CHAPTER 4. REDUCING KEY SIZES BY LIFTING THE UOV MAP

solutions of a system of quadratic equations in n variables with approximately log2(n)2n+2

bit operations (for a proof see [9]). This is independent of the number of equations.
Using this approach a lower bound to the complexity of a UOV reconciliation attack is
log2(v)2v+2 bit operations.

4.3 Choice of parameters

For convenience and efficiency we will work with binary finite fields whose elements are
represented by a number of bits that is a multiple of 16, that is the finite fields we want
to use are F216 ,F232 ,F248 , · · ·

When designing a signature scheme of security level `, we choose a finite field that is
large enough such that the minimal number of equations in a determined regular system
that is needed to reach the security level ` is minimized. Figure 3.2 shows that for 128-
bit and 256-bit security the chosen fields are F248 and F280 respectively, and the minimal
number of equations is 34 and 66 respectively or 40 and 81 when considering quantum at-
tacks. For 100-bit and 192-bit security the chosen fields are F232 and F264 , and the minimal
number of equations is 27 and 50 for classical attackers or 33 and 60 for quantum attackers.

We now consider the constraints on the parameters due to the different attacks against
our scheme. In order to be safe against a direct attack we must have that

m− bv/mc ≥ mmin ,

with mmin equal to 27, 34, 50 or 66 if the desired security level is 100 bits, 128 bits, 192
bits or 256 bits respectively. For quantum attackers mmin is equal to 33, 40, 60 and 81
respectively. In order to be safe against the UOV attack we must have that

2v−o−1n4 > 2` or 2(v−o−1)/2n4 > 2` ,

depending on whether we want ` bits of security against classical, or quantum adversaries.
To be secure against the UOV reconciliation attack it suffices that an attacker cannot solve
a determined system with v equations over F2. Therefore it suffices to have

min(log2(v)2v+2, 252+v0.79) > 2` or 2v/2 > 2` ,

for classical and quantum attackers respectively. The parameter sets displayed in Table 4.2
satisfy all the constraints for the targeted security level and minimize the size of the public
key, i.e. they minimize m.

4.3.1 Trade-off

In comparison to regular UOV, Lifted UOV has much smaller public keys, but also larger
signatures. In the discussion above, we have chosen the parameter r very large in order
to minimize the size of the public key, without regard for the size of the signatures. It
is possible to make a trade-off between the size of the public key and the size of the
signature by choosing a smaller value of r. Having a smaller value of r requires a larger
value of m to reach the same security level, resulting in a larger public key, but since

4.4. IMPLEMENTATION AND RESULTS 39

Table 4.2: Parameter choices and corresponding public key and signature sizes for different
security levels

security level (r,m, v) |pk| (kB) |sig| (kB) classical security

100 bits
classical (32,30,105) 1.7 0.5
quantum (32,37,200) 3.2 0.9 117-bit

128 bits
classical (48,37,137) 3.2 1.0
quantum (48,45,256) 5.7 1.8 153-bit

192 bits
classical (64,54,215) 9.8 2.1
quantum (64,65,384) 17.0 3.5 235-bit

256 bits
classical (80,70,293) 21.2 3.5
quantum (80,87,526) 40.7 6.0 312-bit

the signature consist of n elements of F2r it also leads to smaller signatures. Figure 7.1
compares public key sizes and signature sizes of the Lifted UOV scheme with different
values of the parameter r with some other MQ signature schemes [28], the lattice-based
signature scheme BLISS-II [17] and SPHINCS, a hash-based signature scheme [5].

Example. For some application on a low-cost device it might be desirable to have a
signature scheme that provides 128 bits of post-quantum security with minimal signature
sizes subject to the condition that the public key is smaller than, say, 10 kB. If we choose
the parameters as in the discussion above, we would have a public key of 5.7 kB and
signatures of 1.8 kB. However, we can do better by choosing r = 12. The lowest values
of m and v providing 128 bits of security are then m = 54 and v = 256. This leads to a
public key of 9.8 kB (< 10kB) and a signature of 0.45 kB.

4.4 Implementation and results

For implementing the arithmetic in large binary fields we have used an approach of [25].
All our fields are considered to be field extensions of F216 of low degree, so the elements are
represented by low degree polynomials modulo some irreducible polynomial f ∈ F216 [x].
Adding two field elements is just adding the coefficients of the polynomials, which is done
with a cheap xor operation per coefficient. In order to multiply two field elements we have
to multiply the polynomials and reduce modulo f , so we need to do a small number of
additions and multiplications over F216 . For multiplications over F216 we use a table with
the logarithms of the field elements with respect to some generator, and a table that goes
in the other direction. Multiplying a, b ∈ F216 is then calculated as log−1(log(a) + log(b))
with three table lookups and one addition modulo 216 − 1.

During the key generation algorithm we only work with elements of F2, so we can use
bit slicing to do many field operations at the same time. This makes the key generation
algorithm much more efficient. In fact, key generation is so efficient that we have chosen
not to store the entire private key (F , T), which is typically quite big. Instead, we only
store the seed that was used to generate the key pair. A part of the key generation
algorithm is invoked at the beginning of the signature generation algorithm to generate
the private key from this seed. (Only a part because we only need to generate the secret
key, not the public key.) This approach gives roughly a factor 2 overhead for the signing
algorithm, but it has the benefit that we do not have to store the large private key.

40 CHAPTER 4. REDUCING KEY SIZES BY LIFTING THE UOV MAP

Table 4.3: Comparison of key and signature sizes of some signature schemes

security level pk (B) sk (B) signature (B) Quantum resistant

100 bits

Lifted UOV 1748 36 540 Yes
lattisigns512 [21] 1536 256 1184 Yes

UOVrand [28] 25702 187597 105 Yes
RainbowLRS2 [28] 20685 46080 59 Yes

RSA1536 192 1536 192 No
ECDSA 56 84 56 No

128 bits

Lifted UOV 3256 36 1044 Yes
BLISS-II [17] 7168 2048 5120 Yes
SPHINCS [5] 1056 1088 41000 Yes
UOVrand [28] 52531 390963 135 Yes

RainbowLRS [28] 45568 104960 79 Yes
RSA3072 384 3072 384 No
ECDSA 64 96 64 No

The key and signature sizes of our signature scheme are compared to other signature
schemes in Table 4.3. We see that the public key size and the signature size is significantly
larger than the most widely used signatures (RSA and ECDSA), however these signature
schemes are known to be vulnerable to attacks on quantum computers. In comparison to
other post-quantum signature schemes we do very good in terms of key sizes and signature
sizes. In comparison with other MQ signatures the public keys of the lifted UOV scheme
are much smaller, but the signature sizes are larger.

The signature scheme was implemented in ANSI C. The running times of the different
algorithms are reported in Table 4.4. Our signature scheme is a bit slower than other
MQ signature schemes. One reason is that we work with a larger field, so the arithmetic
takes more work. However, the main reason that our code is not as fast as other MQ
signature schemes is probably that the code is poorly optimized. Apart from optimizing
the code there is a number of things that can be done to speed up the algorithms. We have
used naive implementations of matrix multiplication and field arithmetic, more advanced
methods such as Karatsuba’s algorithm could speed up the code. Large parts of the code
can be parallelized without overhead. Newer CPUs support the CLMUL instruction set
which could be used to perform the field arithmetic efficiently without table lookups.
Moreover, it is possible to use a method of Petzoldt to structure part of the public key in
such a way that the verification algorithm is faster [30]. In order to avoid storing the large
private key, part of the key generation algorithm is run each time a signature is generated
to generate the private key. If a batch of messages is signed together this step only has
to happen once. Alternatively, if storing the private key is not an issue, this part can be
omitted altogether to speed up the signing algorithm significantly.

4.5. APPLICATION TO OTHER MQ SIGNATURE SCHEMES 41

Table 4.4: Running times for the key generation, signing and verification algorithms on a
single thread on an Intel R©CoreTM i7-4710MQ CPU at 2.5 GHz

security level key gen (ms) sig gen (ms) verification (ms)

100 bits
classical 3 4 2
quantum 10 13 6

128 bits
classical 6 10 5
quantum 22 30 14

192 bits
classical 22 35 16
quantum 153 166 57

256 bits
classical 92 119 44
quantum 395 443 156

4.5 Application to other MQ signature schemes

The idea of lifting keys to a large extension field can be applied to any MQ signature
scheme, but it might not always we useful to produce smaller public keys. We believe
that the idea could be used to reduce the size of the public keys of the Rainbow signature
scheme, which is very similar to the UOV scheme. But for schemes such as HFE and C∗

this seems unlikely. The reason is that the public keys of these signature schemes are not
semi-regular maps [18] and have a much smaller degree of regularity than random maps
of the same dimensions. This means that guessing a few variables does not necessarily
reduce the degree of regularity significantly, unlike in the case of semi-regular systems
were guessing even one variable can halve the degree of regularity. This makes the hybrid
approach unsuitable for attacking these systems, since solving the system with one big
Gröbner basis computation is likely to be more efficient. Therefore there is no use for
lifting the system to a larger field, because the complexity of a Gröbner basis computation
is largely independent of the size of the finite field.

42 CHAPTER 4. REDUCING KEY SIZES BY LIFTING THE UOV MAP

Chapter 5

Reducing key sizes using Merkle
trees

In this chapter we present a new signature scheme based on UOV that achieves tiny pub-
lic keys at a cost of larger signatures. The combined sizes of signature and public key is
reduced significantly. Moreover, we show that the new scheme is as secure as the original
OUV scheme. We rely on techniques from hash based cryptography, most notably the
concept of a Merkle Tree, which is explained in Sect. 2.6.

The contents of this chapter and the next is based on joint work with Alan Szepieniec.
Our paper will be presented at the PQCrypto 2017 conference [33].

5.1 Description of the new scheme

The main idea behind the new algorithms is that it is not necessary to communicate the
entire public map P to the verifier. Instead, it suffices to communicate S ◦ P , where S is
a randomly chosen linear map from Fmq to Fαq with α much smaller than m. This is an
improvement because the size of S ◦ P is smaller than P by a factor of α

m
. In the usual

UOV scheme the verifier needs P in order to check if P(s) = H(d). However P is not
needed because it suffices to check if S ◦ P(s) = S ◦ H(d). It is obvious that if the first
equation is satisfied, then so is the second. Conversely, for a randomly chosen S, if the
first equality does not hold, then the probability that the second equality holds, is very
small. The linear map S is chosen by casting the result of a hash function H2 evaluated
at s to a α-by-m matrix. This makes it impossible to solve the system S ◦P(s) = S ◦H(s)
for s because S is only known after s is determined.

The probability that S ◦ P(s) = S ◦ H(d) for an invalid signature (i.e. P(s) 6= H(d))
is q−α. Therefore we should take α = dlogq(2

`)e, such that q−α < 2−`, where ` is the
targeted security level. Each of the α components of S ◦ P takes n(n+ 1)/2 coefficients,
so the total number of bits it takes to communicate S ◦ P is

n(n+ 1)

2
dlogq(2

`)e log2(q) ≈
n(n+ 1)

2
` .

This is independent of q, therefore we can choose the size of Fq really large. This has the
benefit that with a smaller number of variables n we can reach the same security level
(see Fig. 3.2). This decreases the size of the signatures even more.

43

44 CHAPTER 5. REDUCING KEY SIZES USING MERKLE TREES

There is a flaw in the scheme as we have described it until now. If the map S ◦ P is
included in the signature, then nothing prevents an attacker from including some other
map R in the signature such that R(s) = S ◦ H(d). The verifier needs a way to check if
the map R which is included in the signature is equal to S ◦ P . The verifier can calcu-
late S, because it is derived deterministically from the document d and the signature s.
However, the full system P is usually not known to the verifier, exactly because it is too
expensive too communicate.

This problem is solved by interpreting the coefficients of the i-th component of P as
the coefficients of a univariate polynomial p̂i of degree n(n+1)

2
. Similarly, we interpret the

coefficients of i-th component of R as coefficients of the univariate polynomial r̂i of degree
n(n+1)

2
. So we have the polynomials p̂1, · · · , p̂m, r̂1, · · · , r̂α ∈ Fq[x]. We can bundle these

polynomials in two polynomial maps P̂ : Fq → Fnq and R̂ : Fq → Fαq . Obviously, we have

R = S ◦ P if and only if R̂ = S ◦ P̂ . The verifier can check if R̂ = S ◦ P̂ by evaluating
both sides at random values in Fq and checking equality. To make this possible we include

a number of evaluations v1 = P̂(x1), · · · , vϑ = P̂(xϑ) in the signature, where x1, · · · , xϑ
are deduced deterministically from d, s and R. Then the verifier checks if ˆR(xi) is equal
to S(vi) for i from 1 to ϑ.

So far we have merely shifted the problem, now we can be sure that the R which
is included in the signature is really equal to S ◦ P , but only if the vi ∈ Fmq which are

included in the signature are equal to P̂(xi). So cheating is still possible. To prevent this
the xi are drawn from a reasonably large subset of Fq and for each possible xi we validate

the value P̂(xi) using a Merkle tree, the root of which is included in the public key.

5.1.1 Pseudocode

Now we describe the algorithm more formally. The parameters for the algorithm are

• q , the size of the finite field that is used

• m, the number of components of the UOV system

• n = m+ v, the number of variables of the UOV system

• α, the number of components of S

• κ, the length of the hash values in the Merkle tree

• τ , the number of leaves in the Merkle tree

• ϑ, the number of xi’s that is used to check if R = S ◦ P

• H1 : {0, 1}∗ → Fmq , the hash function used to calculate the digest of a message

• H2 : {0, 1}∗ → Fα×mq , the hash function used to deduce S

• H3 : {0, 1}∗ → {1, · · · , τ}ϑ, the hash used to determine which xi are chosen.

• H4 : {0, 1}∗ → {0, 1}κ, the hash function used in the Merkle tree.

5.1. DESCRIPTION OF THE NEW SCHEME 45

Algorithm UOVHashGenerateKeys

input: Random bits to generate a UOV key pair

output: MerkleRoot — A public key
(P , (F , T)) — A corresponding secret key

1: (P , (F , T))←UOVGenerateKeys
2: for i from 1 to τ do
3: xi ← i-th element of Fq according to some arbitrary order

4: vi ← P̂(xi)
5: end for
6: MerkleRoot ← CalculateMerkleRoot(v1, · · · , vτ)
7: return (MerkleRoot , (P , (F , T)))

Alg. 5.1: The key generation algorithm

Algorithm UOVHashSign

input: M — A message to sign
(P , (F , T)) — A private key

output: (s,R, va1 , · · · , vaϑ ,MerklePaths) — A signature for M

1: s←UOVSign(M,F , T)
2: S ← H2(M ||s)
3: R ← S ◦ P
4: for i from 1 to τ do
5: xi ← i-th element of Fq according to some arbitrary order

6: vi ← P̂(xi)
7: end for
8: a1, · · · , aϑ ← H3(M ||s||R)
9: MerklePaths ← empty list

10: for ai from a1 to aϑ do
11: MerklePaths[i]←OpenMerklePath(v1, · · · , vτ , ai)
12: end for
13: return (s,R, va1 , · · · , vaϑ ,MerklePaths)

Alg. 5.2: The signature generation algorithm

46 CHAPTER 5. REDUCING KEY SIZES USING MERKLE TREES

Algorithm UOVHashVerify

input: M — A message
(s,R, va1 , · · · , vaϑ ,MerklePaths) — A candidate-signature for M
MerkleRoot — A public key

output: True if s is a valid signature for M , False otherwise

1: S ← H2(M ||s)
2: if R(s) 6= S ◦ H1(M) then
3: return False
4: end if
5: a1, · · · , aϑ ← H3(M ||s||R)
6: for i from 1 to ϑ do
7: if R̂(xai) 6= S(vai) then
8: return False
9: end if

10: if OpenMerklePath(ai, vai ,MerklePaths[i],MerkleRoot) fails then
11: return False
12: end if
13: end for
14: return True

Alg. 5.3: The signature verification algorithm

5.2 Security analysis of the new scheme

We are able to give a tight reduction of the EUF-CMA game of the new scheme to the
EUF-CMA game of the original UOV signature scheme in the Quantum Random Oracle
Model. This means that if there is an efficient EUF-CMA adversary against the new sig-
nature scheme, this can be converted in an equally efficient EUF-CMA adversary against
the original UOV signature scheme. In other words, the new signature scheme is at least
as secure as the UOV signature scheme.

This is proven using a sequence of games, which is a common proof strategy [32]. The
initial game of the sequence is the EUF-CMA game for the new signature scheme, the last
game of the sequence is the EUF-CMA game for the original signature scheme. Then we
prove that between any two games in the sequence the probability of winning can only
decrease by a tiny amount. This proves that if an adversary wins the first game with a
large probability, there is an adversary which wins the last game with a large probability.
The contrapositive of this statement says that if the original signature scheme is secure,
then the new signature scheme is secure as well. Before proving the reduction, we intro-
duce a few security properties of hash function families.

5.2. SECURITY ANALYSIS OF THE NEW SCHEME 47

5.2.1 Multiple-target second-preimage resistance

The first property is called single-function multiple-target second-preimage resistance
(SM-SPR) and is introduced by Hülsing et al. [22]. The problem is to, given a hash
function H and a set of p messages M1, · · · ,Mp in the domain of H, find a new message
M such that for some i we have Mi 6= M and H(Mi) = H(M). This property is a natural
generalization of the second preimage resistance property to multiple messages at once.
Let InSecSM-SPR

H,p (Q) be the insecurity function of the SM-SPR property with p targets. For
an adversary in the random oracle model there is no better strategy than to just evaluate
the hash function at random inputs and hope that the output matches the output of one
of the messages. Therefore we have InSecSM-SPR

H,p (Q) = (Q + 1) p
2n

. Hülsing et al. prove

that in the quantum random oracle model we have InSecSM-SPR
H,p (Q) = Θ

(
p(Q+1)2

2n

)
, where

the constant hidden in the Θ-notation is small [22].

Algorithm SM-SPR

input: H — A hash function family K × {0, 1}m → {0, 1}n
p — The number of targets
A — An adversary

output: Win / Lose — Whether A wins or loses the game

1: K ← K
2: for i from 1 to p do

3: Mi
$←− {0, 1}m

4: end for
5: M ← A(K,M1, · · · ,Mp)
6: for i from 1 to p do
7: if HK(M) = HK(Mi) and M 6= Mi then
8: return Win
9: end if

10: end for
11: return Lose

Alg. 5.4: The game associated to the SM-SPR property

5.2.2 Multiple-target second-preimage one-wayness

A different security property is called single-function multiple-target one-wayness (SM-
OW). This property is the generalization of the one-wayness property to multiple targets.
Given a number of targets x1, · · · , xp in the range of a hash function H, the problem is
to find an M in the domain of the hash function such that H(M) = xi for some i. It
is shown that the bounds on the security function of SM-SPR also apply to the insecu-
rity function of SM-OW, in the random oracle model and in the quantum random oracle
model. Specifically, in the random oracle model we have InSecSM-OW

H,p (Q) = (Q+ 1) p
2n

and

in the quantum random oracle model we have InSecSM-OW
H,p (Q) = Θ

(
p(Q+1)2

2n

)
, where the

48 CHAPTER 5. REDUCING KEY SIZES USING MERKLE TREES

constant hidden in the Θ-notation is small [22].

5.2.3 Multiple moving targets One-wayness

We define yet another security property called multiple moving targets one-wayness
(MMT-OW). For this property the problem is to, given a computable target function
T : {0, 1}m → P ({0, 1}n), (here P (X) denotes the power set set of X) find an M such
that H(M) ∈ T (M). This property is a generalization of the SM-OW property, since the
latter corresponds to the case where T is the constant function T : {0, 1}m → P ({0, 1}n) :
M 7→ {xi}i∈{1,··· ,p}. In the (quantum) random oracle model, if the target sets are suffi-
ciently small, then the InSec function of the MMT-OW property is also small:

Lemma 2. Fix T : {0, 1}m → P ({0, 1}n) to be a computable target function and p an
integer such that |T (M)| < p for all M in {0, 1}m, then in the (quantum) random oracle
model we have

InSecMMT−OW
T (Q) ≤ InSecSM−OWp (Q) .

Proof. We will make a reduction to the SM-OW game. Suppose A is an adversary that
plays the MMT-OW game and makes up to Q queries to the random oracle. We will
show how to transform this into an adversary BA that wins the SM-OW game with a
probability at least al high as the probability that A wins and makes the same number of
queries to the random oracle as A.

The adversary B is given a random oracle H and targets x1, · · · , xp. Define H′ :
{0, 1}m → {0, 1}n as

H′(x) = σ−1x (H(x)) ,

where σx : {0, 1}n → {0, 1}n is lexicographically the first permutation that maps T (x) into
{x1, · · · , xp}. Note that such a permutation exists, since |T (x)| < p. Now the adversary
B invokes A on the MMT-OW game with random oracle H ′ and target function T . After
making some queries to H′ the adversary A returns a message M , and B terminates his
part of the SM-OW game by returning this message.
It is clear that the adversary BA makes exactly one query to H each time A queries
H′. Moreover if A wins his MMT-OW game, that means that H′(m) ∈ T (m). This is
equivalent to σ−1m (H(m)) ∈ T (m), or H(m) ∈ σm(T (m)) ⊂ {x1, · · · , xp}, so BA wins the
SM-OW game if A wins the MMT-OW game.

5.2. SECURITY ANALYSIS OF THE NEW SCHEME 49

Algorithm MMT-OW

input: H — A hash function family K × {0, 1}m → {0, 1}n
T — The target function
A — An adversary

output: Win / Lose — Whether A wins or loses the game

1: K
$←− K

2: M ← AH(K)
3: if HK(M) ∈ T (M) then
4: return Win
5: else
6: return Lose
7: end if

Alg. 5.5: The game associated to the MMT-OW property

5.2.4 Reduction to the original UOV scheme

Theorem 3. Let ORIGINAL be an MQ signature scheme whose public key has n vari-
ables, and let NEW be the transformed signature scheme, then in the (quantum) random
oracle model we have

InSecEUF-CMA
NEW (t, Q) ≤InSecEUF-CMA

ORIGINAL(t+O(Q), Q)

+ InSecSM-SPR
H4,2τ−1(Q)

+ InSecSM-OW
H3,(n(n+1)/2)ϑ(Q)

+ InSecSM-OW
H2,qα×(m−1)(Q) .

Proof. • Game1 is the EUF-CMA game of the new signature scheme.

• Game2 is similar to Game1 , the difference being that in Game2 there is no Merkle
tree. Instead of the root of the Merkle tree, the public key contains all the leaves
v1, · · · , vτ . In the signature generation algorithm, no Merkle paths are generated
or included in the signature. In the signature verification algorithm, the validity of
the va1 , · · · , vaϑ is checked directly by comparing them with the vi in the public key,
instead of by verifying the Merkle paths.

Given an adversary A that plays Game1 we define an adversary A’ that plays
Game2 as follows: When A′ receives the public key v1, · · · , vτ it calculates the root
of the Merkle tree with the vi’s as leaves, and sends it as the public key of Game1

to A. Whenever A requests a message m to be signed, A′ sends this message on to
the challenger, who returns with a signature s for m, then A’ calculates the Merkle
paths for the vai included in s, and appends them to the signature before sending it
on to A. Eventually, when A responds with a message signature pair (m, s) A’ sim-
ple removes the Merkle paths from the signature s to get s′, and sends the modified

50 CHAPTER 5. REDUCING KEY SIZES USING MERKLE TREES

pair (m, s′) on to the challenger.

Now, we prove that A′ wins Game2 with a sufficiently large probability. If the pair
(m, s) wins Game1 , then (m, s′) wins game Game2, unless one of the vai included
in the signature is not equal to the vai in the public key. However, if (m, s) wins
Game1, this implies that the Merkle path included in s is valid, so vai can only be
different from the vai included in the public key if A has forged a Merkle path for
a different ai. This requires finding a second preimage for one of the 2τ − 1 values
in the Merkle tree. Therefore, the probability that A′ wins Game2 is at least equal
to the probability that A wins Game1 minus InSecSM-SPR

H,2τ−1 (Q).

• Game3 differs from Game2 in that the vi’s in the public key are replaced by P .
In the key generation and signature generation algorithms, the vi no longer have
to be calculated or included in the signature. In the verification algorithm, instead
of verifying whether R = S ◦ P through the vai , this is done directly using the P
which is included in the public key.

Given an adversary A that plays Game2, we define an adversary A′ which plays
Game3 as follows: When A′ receives P , the public key of Game3, A

′ uses this to
calculate all the v1, · · · , vτ and sends them as a public key of Game2 to A. When A
requests a message m to be signed, A′ passes it on to the challenger of Game3, who
replies with a signature s. Then A′ calculates S and R, and evaluates H3(m||s||R)
to generate a1, · · · , aϑ. Then A′ computes the va1 , · · · , vaϑ and includes them in s
to get a valid signature for m in Game2, which he can then send to A. Eventually,
when A produces a message-signature pair (m, s) A′ removes the vai from s to get
a signature s′ for m in Game3. Then A′ sends the pair (m, s′) to the challenger of
Game3.

Now we prove that A′ wins Game3 with a sufficiently high probability. We show
that the probability that A′ returns a pair (m,s) that wins Game2, but such that
(m,s’) does not win Game3 is bounded by InSecSM−OWH3,(n(n+1)/2)ϑ

(Q). In order for (m, s)

to win Game2 it is required that R̂(xai) = S(vai) for all ai ← H3(M ||s||R). In or-
der for (m, s′) not to win Game3 we require that R 6= S ◦ P or equivalently that
R̂ 6= S ◦P̂ . Finding m, s and R that satisfy these conditions can be formulated as a
multiple moving target one-wayness problem for the H3 hash function with the tar-
get function T : {0, 1}?×{0, 1}log2(q)×n×{0, 1}log2(q)×α×(n(n+1)/2) → P ({0, 1}log2(τ)×ϑ)
defined as

T (m, s,R) =

{
∅ if R = S ◦ P
{i ∈ {1, · · · , τ}|R̂(xi) = S(vi)}ϑ else

.

IfR 6= S◦P then R̂−S◦P̂ is a set ofm univariate polynomials of degree≤ n(n+1)/2,
and at least one of these polynomials is nonzero. Therefore the solution set of these
polynomials contains at most n(n+ 1)/2 solutions and

|T (m, s,R)| ≤
(
n(n+ 1)

2

)ϑ

5.2. SECURITY ANALYSIS OF THE NEW SCHEME 51

for all m, s and R. Lemma 2 states that the probability that A wins Game2 but
A′ does not win Game3 is bounded by InSecSM−OWH3,(n(n+1)/2)ϑ

(Q).

• The last game of the sequence, Game4, is the EUF-CMA game of the original sig-
nature scheme. The differences with Game3 are that Game3 includes R in the
signature whereas Game4 does not and that in the signature verification algorithm
of Game3 it is verified that R(s) = S ◦ H1(d) and R = S ◦ P , whereas in the
verification algorithm of Game4 only P(s) = H1(d) is verified.

Given an adversary A that plays Game3, we construct an adversary A′ that plays
Game4 as follows: When A′ receives the public key P , he sends it on to A. When
A requests a message m be signed, A′ passes it on to the challenger of Game4 and
receives a signature s from m. Then A′ calculates S = H2(m||s) and R = S ◦ P ,
includes R in the signature s to get a valid signature for Game3, and A′ sends
this signature to A. Eventually, when A returns a message-signature pair (m, s), A′

removes R from s to get a signature s′ for Game4. Then A′ sends (m, s′) to the
challenger of Game4.

Now we prove that A′ wins Game4 with a sufficiently large probability. We show
that the probability that the pair (m, s) wins Game3 but (m, s′) does not win
Game4 is bounded by InSecSM−OWH2,qα×(m−1) . If (m, s′) does not win Game4 this means

that P(s′) − H1(m) is a nonzero vector. However, if (m, s) wins Game3 then
S ◦ P(s′) = S ◦ H(m), so P(s′) − H1(m) sits in the kernel of S ← H2(m||s′).
Finding m and s′ that satisfy these conditions can be formulated as a multiple mov-
ing targets one-wayness problem for the hash function H2 and the target function
T : {0, 1}? × {0, 1}log1(q)×n → {0, 1}log2(q)×α×m defined by

T (m, s′) =

{
∅ if P(s′) = H(m)

{S ∈ Fα×mq |S(P(s′)−H1(m)) = 0} else
.

For any choice of m and s′ the set T (m, s′) is either empty, or the set of α-by-
m matrices that maps a certain vector of length m to 0, so we have |T (m, s′)| ≤
qα×(m−1). Lemma 2 now says that the probability that A wins Game3 but A′ does
not win Game4 is bounded by InSecSM−OWH2,qα×(m−1)(Q).

Corollary 3. Let ORIGINAL be an MQ signature scheme whose public key has n vari-
ables, and let NEW be the transformed signature scheme, then in the random oracle
model we have

InSecEUF-CMA
NEW (t, Q) ≤InSecEUF-CMA

ORIGINAL(t+O(Q), Q)

+ (2τ − 1)
Q+ 1

2κ

+

(
n(n+ 1)

2τ

)ϑ
(Q+ 1)

+ q−α(Q+ 1) .

52 CHAPTER 5. REDUCING KEY SIZES USING MERKLE TREES

Proof. This follows straightforwardly from Theorem 3, since in the random oracle model
we have for hash functions H with range {0, 1}n

InSecSM-OW
H,p (Q) = InSecSM-SPR

H,p (Q) = p
Q+ 1

2n
,

and the ranges of H4,H3 and H2 are {0, 1}κ, {0, 1}log2(τ)×ϑ and {0, 1}log2(q)×α×m respec-
tively.

Corollary 4. Let ORIGINAL be an MQ signature scheme whose public key has n vari-
ables, and let NEW be the transformed signature scheme, then in the quantum random
oracle model we have

InSecEUF-CMA
NEW (t, Q) ≤InSecEUF-CMA

ORIGINAL(t+O(Q), Q)

+ Θ

(
(2τ − 1)

(Q+ 1)2

2κ

)
+ Θ

((
n(n+ 1)

2τ

)ϑ
(Q+ 1)2

)
+ Θ

(
q−α(Q+ 1)2

)
.

Proof. This follows straightforwardly from Theorem 3, since in the quantum random
oracle model we have, against quantum adversaries for hash functions H with range
{0, 1}n

InSecSM-OW
H,p (Q) = InSecSM-SPR

H,p (Q) = Θ

(
p

(Q+ 1)2

2n

)
,

and the ranges of H4,H3 and H2 are {0, 1}κ, {0, 1}log2(τ)×ϑ and {0, 1}log2(q)×α×m respec-
tively.

5.3 Small improvements

The improvements of the UOV signature scheme that are discussed in Sects. 3.7 and 3.8
can be applied to the new signature scheme as well. If we use the construction of Petzoldt
(see Sect. 3.7) the verifier can generate the first part of P . This means that we only have
to put the last m(m+1)/2 coefficients of each component ofR in the signature. Moreover,
only the last m(m + 1)/2 coefficients of each component of R have to be verified using

the Merkle tree construction, which is more efficient. Moreover, the factor
(
n(n+1)

2τ

)ϑ
in

Corollaries 3 and 4 can be replaced by
(
m(m+1)

2τ

)ϑ
, so we can have smaller values of τ or ϑ.

The method of Sect. 3.8 that chooses T of some special form in order to speed up the
algorithm applies without any problems. However the runtime of the key generation and
signing algorithms is dominated by the building of the Merkle tree, so using this method
only makes a relatively small impact.

5.4. CHOICE OF PARAMETERS 53

5.4 Choice of parameters

In light of Corollary 3, it is clear that in order to design a signature scheme which is secure
against classical adversaries it suffices to pick parameters such that the UOV signature
scheme is secure against classical adversaries, and with α, τ, ϑ and κ large enough such
that the three extra terms are very small. Similarly, in order to design a signature scheme
which is secure against quantum adversaries it suffices to pick the parameters of the UOV
signature scheme such that UOV is secure against quantum adversaries, and the other
parameters large enough such that the terms in Corollary 4 are very small.

For convenience and efficiency we will work with binary finite fields whose elements
are represented by a number of bits that is a multiple of 16, that is the finite fields we
want to use are F216 ,F232 ,F248 and so on.

When designing a signature scheme of security level `, we choose a finite field that is
large enough such that the minimal number of equations in a determined regular system
that is needed to reach the security level ` is minimized. Figure 3.2 shows that for 128-
bit and 256-bit security the chosen fields are F248 and F280 respectively, and the minimal
number of equations is 34 and 66 respectively or 40 and 81 when considering quantum at-
tacks. For 100-bit and 192-bit security the chosen fields are F232 and F264 , and the minimal
number of equations is 27 and 50 for classical attackers or 33 and 60 for quantum attackers.

First, we consider the constraints on the parameters due to the different attacks against
the original UOV scheme. In order to be safe against a direct attack we must have that

m− bv/mc ≥ mmin ,

with mmin equal to 27, 34, 50 or 66 if the desired security level is 100 bits, 128 bits, 192
bits or 256 bits respectively. For quantum attackers mmin is equal to 33, 40, 60 and 81
respectively. In order to be safe against the UOV attack we must have that

qv−o−1n4 > 2` or q(v−o−1)/2n4 > 2` ,

depending on whether we want ` bits of security against classical, or quantum adversaries.
It is customary to take v = 2m in order to defend against these attacks [23]. Since we
are working over large finite fields (i.e. q is large) it seems that such a large number of
vinegar variables in not necessary in this case, however we will stick to this convention
because this choice only has a relatively small effect on the speed and signature size of the
signature scheme. To be secure against the UOV reconciliation attack it suffices that an
attacker cannot solve a determined system with v equations over Fq. Therefore it suffices
to have v > mmin, which is automatically satisfied if v = 2m.

The UOV signature scheme is believed to be secure if the above constraints are satis-
fied, so we assume that the term InSecEUF-CMA

ORIGINAL(t + O(Q), Q) in Corollaries 3 and 4 are
sufficiently small. To make the other terms small, we choose the values of α, τ, ϑ and κ
sufficiently large. To prevent an attacker from forging Merkle paths we choose κ = ` in
the case of classical security, or κ = 2` in the case of quantum security. To prevent a
classical or quantum attacker from finding a R 6= S ◦ P that is accepted by the verifier

54 CHAPTER 5. REDUCING KEY SIZES USING MERKLE TREES

Table 5.1: Parameter choices and corresponding signature sizes for different security levels.
All parameter sets have τ = 216. The size of the public key is equal to κ bits.

security level (r,m, v) (κ, ϑ, α) |sig| (kB) classical security

100 bits
classical (32,29,58) (100, 14, 3) 10
quantum (32,35,70) (200, 28, 7) 33 117-bit

128 bits
classical (48,36,72) (128, 20, 3) 22
quantum (48,42,84) (256, 39, 6) 62 143-bit

192 bits
classical (64,52,104) (192, 35, 3) 61
quantum (64,62,124) (384, 69, 6) 178 224-bit

256 bits
classical (80,68,136) (256, 54, 4) 156
quantum (80,83,166) (512, 107, 7) 434 296-bit

we pick τ and ϑ such that (
m(m+ 1)

2τ

)ϑ
≤ 2−` or 2−2` ,

respectively. Larger values of τ allow for smaller values of ϑ and smaller signatures, but
result in a larger Merkle tree and thus a slower algorithm. We have chosen to take τ = 216

and choose ϑ high enough to satisfy the inequality. Lastly, to prevent an attacker to forge
a signature by brute force we take α such that q−α ≤ 2−` or 2−2` in the classical or quan-
tum case respectively. The parameter sets displayed in Table 5.1 satisfy all the constraints
for the targeted security level.

In our implementation we have chosen the Keccak hash function for all required hash
functions H1,H2,H3 and H4. An advantage of this hash function is that the size of the
output is flexible. Also, some parameter choices of keccak are standardized by NIST, so
it is natural to choose this hash function when designing a signature scheme that we want
to submitted to NIST.

5.5 Implementation and results

We have implemented the algorithm in ANSI C. We have used the same lookup table-
method for the arithmetic in finite fields as in the implementation of the Lifted UOV
algorithm as explained in Sect. 4.4. Table 5.2 shows that the key generation and signature
generation algorithms are quite slow. This is because during the key generation algorithm
a Merkle tree with τ leaves has to be built and to obtain each leaf a univariate polynomial
of degree m(m + 1)/2 has to be evaluated. This means that in total we need roughly
τm2/2 multiplications in the finite field which makes key generation quite slow. In our
implementation of the signature generation algorithm 2ϑ subtrees of the merkle tree with√
τ leaves have to be built, which is also quite slow. Both algorithms can be sped up

by choosing a smaller value of τ , but this results in larger signatures. The algorithm is
very suitable for parallelization, which could be used to speed up the process without any
significant overhead.

5.5. IMPLEMENTATION AND RESULTS 55

Table 5.2: Running times for the key generation, signing and verification algorithms on a
single thread on an Intel R©CoreTM i7-4710MQ CPU at 2.5 GHz

security level key gen (s) sig gen (s) verification (ms)

100 bits
classical 14.5 1.1 20
quantum 23.8 3.2 42

128 bits
classical 32.7 3.6 40
quantum 46.6 9.0 81

192 bits
classical 114 21.1 121
quantum 185 59.9 256

256 bits
classical 286 84.3 366
quantum 520 257 868

56 CHAPTER 5. REDUCING KEY SIZES USING MERKLE TREES

Chapter 6

Multiple Signatures for each message

In the previous chapter we developed a signature scheme that is provably as secure as
UOV, but with a significant reduction in |pk|+ |s|. In this chapter we will make a small
change to the signature scheme to reduce |pk| + |s| even more. The signature scheme of
the previous chapter has a parameter α, which has to be high enough to protect against
a brute force attack. In this chapter we take α very small (e.g. α = 1) and we protect
against a brute force attack by producing multiple signatures for each message. The re-
sulting signature scheme is no longer provably as secure as the original UOV scheme, but
relies on the hardness of a natural generalization of the MQ problem, which we call the
AMQ problem (Approximate Multivariate Quadratics).

6.1 Description of the new scheme

The new signature scheme is identical to the signature scheme described in the previous
chapter except that there are σ signatures for each message instead of just one. This means
that a signature for a message now looks like (s1, · · · , sσ,R, va1 , · · · , vaϑ ,MerklePaths) in-
stead of (s,R, va1 , · · · , vaϑ ,MerklePaths). Each si is a UOV signature for the message
M ||i for i ranging from 1 to σ. The key generation algorithm has not changed, the sig-
nature generation algorithm now makes σ UOV signatures instead of just one. Also, S
and the ai are determined by H2(M ||s1|| · · · ||sσ) and H3(M ||s1|| · · · ||sσ||R) respectively.
It is important that all the si are hashed into S and the ai’s because otherwise all the σ
signatures could be brute forced independently. Lastly, the verification algorithm checks
if S ◦ P(s1) = S ◦ H(M ||i) for all i.

In the case σ = 1 the signature scheme is identical to the signature scheme of the
previous chapter. For σ > 1 we hope that we can pick a smaller value of α than in the
σ = 1 case. The signature contains α large quadratic polynomials, so reducing α is well
worth including a few extra signatures, because the signatures are very small compared
to the size of a quadratic polynomial in n variables.

57

58 CHAPTER 6. MULTIPLE SIGNATURES FOR EACH MESSAGE

6.2 Security Analysis of the new scheme

The security proof of the previous chapter still applies to the new signature scheme. That
means that if qα > 2l the signature scheme is still as secure as UOV, given that κ, τ and
ϑ are sufficiently large. However, a brute force attack against the new signature scheme
has complexity O(qσα) and we would want to reduce α by having multiple signatures
(i.e. σ > 1). One could hope to adapt the security proof of the previous chapter in such
a way to have the factor q−σα instead of q−α in Corollaries 3 and 4, but sadly this is not
possible.

In the security proof for the case σ = 1 we had that the probability that S ◦ P(s) =
S◦H(M) for a random linear map S : Fmq → Fαq is either 1 in the case that P(s) = H(M) or
q−α otherwise. This means that an attacker has either to find a solution to P(s) = H(M)
or be extremely lucky to forge a signature. In the σ > 1 case this remains true for any of
the individual signatures, but the probabilities of the events S ◦ P(si) = S ◦ H(M ||i) for
the different i from 1 to σ are not independent, so if for all i we have P(si) 6= H(M ||i)
then the probability that S ◦P(si) = S ◦H(M ||i) for all i is not necessarily equal to q−σα.

The event that for all i we have S ◦ P(si) = S ◦ H(M ||i) happens if and only if
all P(si) − H(M ||i) lie in the kernel of S. Therefore, if d is the dimension of the sub-
space 〈P(s1)−H(M ||1), · · · P(sσ)−H(M ||σ)〉 then the probability that for all i we have
S ◦ P(si) = S ◦ H(M ||i) is equal to q−dα. Therefore, an attacker has to produce si such
that the errors lie in a low dimensional space. We call this problem the Approximate
Multivariate Quadratics problem.

6.2.1 AMQ Problem

While in the MQ problem the objective is to solve a quadratic system of equations exactly,
the objective in the approximate MQ problem is to solve a quadratic system for a bunch of
target vectors approximately. By this we mean that it is allowed to make errors, provided
that the errors live in a subspace of Fmq of small dimension. A more formal definition of
the Approximate Multivariate Quadratics problem goes like this:

AMQ Problem. Given a quadratic polynomial map P : Fnq → Fmq over a finite field
Fq, and target vectors y1, · · · ,yσ ∈ Fmq find x1 · · · ,xσ ∈ Fnq that satisfy

dim(〈P(x1)− y1, · · · ,P(x1)− y1〉) ≤ d .

We can immediately make a number of observations about the AMQ Problem. We
write AMQ[n,m, σ, d] to make the parameters explicit

1. AMQ[n,m, σ, 0] is equivalent to σ instances of the MQ[n,m] problem.

2. If d ≥ σ the AMQ[n,m, σ, d] problem is trivial since any choice of xi will be a
solution.

6.2. SECURITY ANALYSIS OF THE NEW SCHEME 59

3. AMQ[n,m, σ, d] > AMQ[n,m, σ, d+1], that is, the problem gets easier with increas-
ing d.

4. AMQ[n,m, σ, d] < AMQ[n,m, σ + 1, d], that is, the problem gets harder with in-
creasing σ.

5. AMQ[n,m, σ, d] <AMQ[m,n, σ − 1, d]+MQ[m − d, n] because the AMQ problem
can be solved by first solving the AMQ problem for the first σ− 1 target vectors to
find the x1, · · · ,xσ−1 and then solve the quadratic system S ◦P(xσ) = S(yσ) where
S : Fmq → Fm−dq is a projection onto a linear complement of the subspace spanned
by all the errors made by the x1 · · ·xσ−1.

We can combine observations 5 and 2 into an algorithm for solving the AMQ prob-
lem. Using observation 5 a number of times we can reduce AMQ[n,m, σ, d] to solving
AMQ[n,m, d, d] and solving σ− d instances of the MQ[n,m− d] problem. Observation 2
tells that the former is trivial. In practice this boils down to:

1. Choose the x1, · · · ,xd at random.

2. If we are lucky the dimension of 〈P(x1) − y1, · · · ,P(xd) − yd〉 is not equal to d
and we can choose more xi at random until the space spanned by the error has
dimension d.

3. Calculate S, a projection onto a linear complement of the space of errors. This
means that for a vector v ∈ Fmq we have S(v) = 0 if and only if v lies in the space
of errors. This can be done as follows: Calculate a basis v1, · · · , vd for the subspace
spanned by the errors and complete it to a basis v1, · · · , vm for all of Fmq . Let V be
the matrix whose columns are the vi, then a matrix representation of S is given by
the submatrix of the lowest m− d rows of V −1.

4. Solve the quadratic systems S(P(xi)− yi) = 0 to find the remaining xi.

The security of the new signature scheme depends on the hardness of the AMQ prob-
lem, because every time an attacker can solve an instance of the AMQ[n,m, σ, d] problem
he has a probability of q−dα that the errors lie in the kernel of S and that they go un-
noticed by the verifier. So in order for the signature scheme to be secure it should be
impossible to produce a large number of solutions to an AMQ[n,m, σ, d] problem with
a sufficiently low value of d. This seems likely, but more research into the hardness of
solving the AMQ problem and how it relates to the hardness of the MQ problem is needed.

6.2.2 AMQ attack

The AMQ attack repeatedly solves the AMQ problem with the public map P , the target
set yi = H(M ||i) and some value of d. For each solution set s1, · · · , sσ the attacker checks
if S ◦P(si) = S ◦H(M ||i) for all i, which happens with probability q−dα. If such a solution
set is found it can be used to make a valid signature by adding the appropriate R , vai
and Merkle paths. The attack has a complexity of

min
d
qdα(AMQ[n,m, σ, d] + C) ,

60 CHAPTER 6. MULTIPLE SIGNATURES FOR EACH MESSAGE

where C stands for the complexity of checking whether a solution set si satisfies S◦P(si) =
S ◦ H(M ||i) for all i.

We know of no better algorithm for solving the AMQ problem than the algorithm we
described earlier. If we use that approach the AMQ problem reduces to a number of MQ
problems and the complexity of the attack becomes

min
d
qdα((σ − d)MQ[n,m− d] + C) .

If we use (3.1) to estimate the complexity of the MQ problem we see that as d increases
the MQ problem gets easier, but it does not get easier fast enough to make up for the
increase in the factor qdα, even if α = 1. Therefore the complexity of the attack grows
with d until the case d = σ where suddenly the AMQ problem is trivial and we do not
have to solve any MQ problem at all. Therefore the most efficient choice of d is always
d = 0 or d = σ, so the complexity of the attack is equal to

min (σMQ[n,m], qσαC) .

This suggests that the signature scheme is secure if MQ[n,m] > 2` and qσα > 2`,
where ` is the desired security level.

6.3 Choice of Parameters

When choosing the parameters for this signature scheme the same constraints have to be
satisfied as in the case of the previous chapter. That is, the parameters q, n,m should
guarantee that the original UOV scheme is secure and κ, τ and ϑ should be large enough

such that the inequalities κ > ` and
(
m(m+1)

2τ

)ϑ
> 2` hold1. However, instead of qα > 2`

we now demand that qσα > 2`.

In the previous chapter it was beneficial to work over a large finite field, because
having a large value q allows for a lower value of α, which makes the signatures smaller.
However, now we can compensate for a small value of α by increasing σ, so it is no longer
necessary to work over large finite fields. A small problem when working over a smaller
field is that q is no longer higher than τ , which is a problem because we need to evaluate
P̂ at τ different values to produce the leaves of the Merkle tree. The obvious solution is
to define the polynomial P̂ as a polynomial over a degree k field extension of Fq, with k
large enough such that qk > τ .

6.4 Implementation and results

As the signature scheme is very similar to the signature introduced in the previous chap-
ter it did not take much work to implement this signature scheme. The major difference
is the finite field that is used. We work with the field F127, which is straightforwardly
implemented with addition and multiplication modulo 127. We also needed a degree 3

1replace ` by 2` for quantum security

6.5. APPLICATION TO OTHER MQ SIGNATURE SCHEMES 61

Table 6.1: Parameter choices and corresponding signature sizes for different security levels.
All parameter sets have q = 127, k = 3 and τ = 216. The size of the public key is equal
to κ = l or κ = 2l bits.

security level (m, v) (ϑ, σ, α) |sig| (kB) classical security

100 bits
classical (39,78) (13, 8, 2) 6.1
quantum (47,94) (27, 15, 2) 18.0 122-bit

128 bits
classical (50,100) (18, 10, 2) 10.3
quantum (60,120) (38, 19, 2) 30.9 153-bit

192 bits
classical (76,152) (32, 14, 2) 26.0
quantum (92,184) (70, 28, 2) 82.9 231-bit

256 bits
classical (102,204) (49, 19, 2) 51.3
quantum (124,248) (110, 37, 2) 170 310 -bit

Table 6.2: Running times for the key generation, signing and verification algorithms on a
single thread on an Intel R©CoreTM i7-4710MQ CPU at 2.5 GHz

security level key gen (s) sig gen (s) verification (ms)

100 bits
classical 25 1.6 45
quantum 39 4.9 135

128 bits
classical 46 4.1 102
quantum 79 13 322

192 bits
classical 148 22 446
quantum 263 79 1558

256 bits
classical 351 77 1409
quantum 644 289 4901

extension of F127, for which we used F127[X]/(X3 − 3).

By comparing Table 6.1 to Table 5.1 we see that, using the idea of using multiple
UOV signatures for the same message, we are able to reduce the size of the signatures
by a factor of 2. Comparing Table 5.2 and Table 5.2 we see that the key generation
and signing algorithms of the modified signature scheme is roughly as fast as the original
UOVHash scheme, which means that it is quite slow. This is because the bottleneck is
building the Merkle trees, which is largely unaffected by the modification. The signature
verification algorithm is slower, because we have to verify a large number of signatures
instead of just one.

6.5 Application to other MQ signature schemes

The idea presented in this chapter and the previous chapter can be applied to any MQ
signature scheme. The reduction proof of the previous chapter did not depend on any of
the details of the UOV signature scheme and holds for any other MQ signature scheme.
That means that if we start from a MQ signature scheme that provides ` bits of security

and we apply the modification with parameters such that κ > l ,
(
n(n+1)
2kτ

)ϑ
< 2−l and

qα > 2l we get a signature scheme that also provides ` bits of security. The new signature

62 CHAPTER 6. MULTIPLE SIGNATURES FOR EACH MESSAGE

Table 6.3: Applying our modification to other MQ signature schemes. For all modified
MQ schemes we have chosen τ = 216

Signature scheme parameters |pk| |s|

RainbowLRS2
original q = 256, n = 79,m = 43 45 kB 632 bits

(128 bit security)
modification 1 α = 16, k = 2, ϑ = 19 128 bits 23 kB
modification 2 α = 1, σ = 16 128 bits 8.6 kB

Gui-127
original q = 2, n = 133,m = 123 139 kB 163 bits

(120 bit security)
modification 1 2 α = 120, k = 16, ϑ = 18 120 bits 144 kB
modification 2 α = 2, σ = 60 120 bits 12 kB

scheme has as public key a Merkle root of κ bits. A signature consists of one signature of
the original signature scheme, α polynomials and ϑ roots of the Merkle tree and Merkle
paths. The total size of the signature is therefore

|soriginal|+
α

m
|pkoriginal|+ ϑ (κdlog2(τ)e+mkdlog2(q)e) bits.

Alternatively, using the approach introduced in this chapter, we can introduce the pa-
rameter σ and relax the condition qα > 2l to qσα > 2l. If the AMQ problem is hard
enough for the public system of the MQ signature scheme we started from this results in
a secure signature scheme. The size of the public key is then still κ bits and the size of
the signatures is

σ|soriginal|+
α

m
|pkoriginal|+ ϑ (κdlog2(τ)e+mkdlog2(q)e) bits.

In Table 6.3 we apply the two modifications to the RainbowLRS2[28] signature scheme
and the Gui-127 signature scheme [29]. In the case of the RainbowLRS2 signature scheme
we can reduce the combined cost of a signature and the public key by a factor of 2 and
provably have the same level of security as the original RainbowLRS2 signature scheme.
Or, relying on the hardness of the AMQ problem we can reduce the size by a factor of
5. For the Gui signature scheme, we cannot reduce the sizes whist provably having the
same security level as the original Gui-127 scheme. This is because Gui works over the
field with 2 elements, so in order to have qα > 2l we need α = 120. However, if we use
multiple signatures we can have a very small value of α, which reduces the combined size
of a signature and the public key by an order of magnitude.

2To protect against a birthday attack the original Gui-127 signature scheme uses a strategy that signs
a message with 4 rounds of HFEv-. With our modification this approach is no longer usable, instead we
can just use σ = 4. This has only a very small impact on the total size of the signature.

Chapter 7

Conclusion

Multivariate cryptography is a promising candidate for providing secure post-quantum
signature schemes. However, these signature schemes have large public keys, which is a
problem for many applications. In this thesis two new multivariate signature schemes are
proposed with much smaller public keys. Figure 7.1 compares the new signature schemes
(LUOV and UOVHash) to some other signature schemes from the various branches of
post-quantum cryptography. SPHINCS-256 is a hash-based signature scheme that pro-
vides 128-bits of post-quantum security with a public key of 1kB and signatures of
41kB [5]. From the branch of lattice based cryptography we have the BLISS-II signature
scheme which provides the same level of security with public keys of 7kB and signatures
of 5kB. Lastly, we have included UOVRand and RainbowLRS, two other multivariate
signature schemes which have small signatures of around 0.1kB but large public keys of
around 50kB. Figure 7.1 shows that the new signature schemes have smaller keys and
signatures than the existing post-quantum signature schemes.

7.1 Lifted UOV

The simple idea of lifting a UOV key pair from F2 to an extension field F2r increases the
security against direct attacks without affecting the size of the public key. At the same
time, thanks to the method of Petzoldt, we can increase the number of vinegar variables to
protect against key recovery attacks without increasing the size of the public key. These
two ideas come together to create a secure signature scheme whose public key is an order
of magnitude smaller than other MQ signature schemes, with slightly larger signatures.
The signature scheme is very competitive with other post-quantum signature schemes. By
choosing the parameter r it is possible to make a trade-off between larger public keys and
smaller signatures or vice versa. We made a rudimentary ANSI C implementation of the
Lifted UOV signature scheme which shows that key generation, signing and verification
takes only a few milliseconds for 100-bit security instantiations of the scheme and up to
a few hundred milliseconds for 256-bit security instantiations. However it is very likely
that these times can be improved significantly.

The idea of lifting public keys to an extension field can be used to reduce the size of
the public keys of the Rainbow signature scheme, but is probably not beneficial for MQ
schemes that do not have semi-regular public keys such as HFE and C∗.

63

64 CHAPTER 7. CONCLUSION

0.1kB 1kB 10kB 100kB

Size of the public keys

0.1kB

1kB

10kB

100kB

S
iz

e
 o

f
th

e
 s

ig
n
a

tu
re

s

SPHINCS

LUOV48
LUOV32

LUOV16

LUOV8

LUOV4
RainbowLRS

UOVRand

BLISS-II

UOVHash

UOVHash2

Figure 7.1: Comparison of key and signature sizes of some post-quantum signature
schemes providing 128 bits of security

7.2 UOVHash

The UOVHash signature scheme achieves tiny public keys and somewhat larger signatures
but reduces the sum of both sizes significantly. In this signature scheme the verifier only
checks a few random linear combinations of the public system instead of the full system.
This way the verifier does not need to know the full system, which saves a lot of bits in
communication. To make the idea work we borrow the concept of a Merkle tree from hash
based cryptography. The resulting signature scheme is provably as secure as the original
UOV signature scheme. By using multiple UOV signatures for the same message, we can
reduce the size of the signatures significantly. The security of this modification depends
on the hardness of a new problem, the Approximate MQ problem, which is a natural
generalization of the MQ problem.

This construction can be applied to any other MQ signature scheme to decrease the
combined size of a signature and a public key significantly. The parameters can be chosen
such that there is provably no loss in security by applying the modification. Alternatively,
it is possible to choose the parameters more aggressively to achieve smaller signatures
whose security depends on the AMQ problem. In Sect. 6.5 we show that this idea can
reduce the combined cost of a signature and a public key by a factor 5 in the case of the
RainbowLRS2 signature scheme and in the case of Gui-127 by a factor of 10.

List of Figures

2.1 Binary Merkle tree of height 2. 11

3.1 Schematic representation of multivariate quadratic cryptosystems. 16
3.2 The minimal size of a determined system to reach a desired security level. . 28

7.1 Comparison of some post-quantum signature schemes 64

List of Tables

3.1 The effect of Petzoldt’s method on the public key size 33

4.1 Running time of direct attack against the original and modified UOV scheme 37
4.2 Parameter choices and corresponding public key and signature sizes 39
4.3 Comparison of key and signature sizes of some signature schemes 40
4.4 Running times for the key generation, signing and verification algorithms . 41

5.1 Parameter choices and corresponding signature sizes 54
5.2 Running times for the key generation, signing and verification algorithms . 55

6.1 Parameter choices and corresponding signature sizes 61
6.2 Running times for the key generation, signing and verification algorithms . 61
6.3 Applying our modification to other MQ signature schemes 62

65

List of Algorithms

2.1 The game associated the the second preimage resistance property. 6
2.2 The game associated to the EUF-CMA attack 10
2.3 Algorithm that calculates the hash value of a node of a Merkle Tree. . . . 12
2.4 Algorithm that calculates the root of a Merkle tree 12
2.5 Algorithm for calculating the list of hash values required to validate a leaf. 13
2.6 Algorithm that verifies the validity of a Merkle path 13

3.1 The generic MQ Signature generation Algorithm 16
3.2 The generic MQ signature generation algorithm 17
3.3 The generic MQ signature verification algorithm 17
3.4 The UOV key pair generation algorithm 22
3.5 The UOV signature generation algorithm 22
3.6 The UOV signature verification algorithm 22
3.7 An improved Key generation algorithm 32
3.8 Algorithm for solving F1 ·A11 = P1 for F1. 34

5.1 The key generation algorithm . 45
5.2 The signature generation algorithm . 45
5.3 The signature verification algorithm . 46
5.4 The game associated to the SM-SPR property 47
5.5 The game associated to the MMT-OW property 49

66

List of Symbols

General Signature schemes

d A document to sign

pk A public key

sk A secret key

s A signature

|d| The number of bits (or Bytes, kiloBytes) needed to represent a document to sign

|pk| The number of bits (or Bytes, kiloBytes) needed to represent a public key

|sk| The number of bits (or Bytes, kiloBytes) needed to represent a secret key

|s| The number of bits (or Bytes, kiloBytes) needed to represent a signature

` The security level of a signature scheme

Xg

MQ signature schemes

F Central map

S Linear map that shuffles the components

T Linear map that shuffles the variables

m Number of components of public key

n Number of variables of public key

P Public map

Xa

Xb

Xc

Xd

Xe

67

68 LIST OF ALGORITHMS

Algebra over finite fields

Fnq A n-dimensional vector space over Fq

Fq A finite field with q elements

ME A matrix representation for a linear map E (with respect to some basis which is
not mentioned explicitly)

Mf A matrix representation for a quadratic form f (with respect to some basis which
is not mentioned explicitly)

A A matrix

GL(q, n) The general linear group of order n over the field Fq

q The number of elements of a finite field

A> The transpose of the matrix A

Ia The unit matrix of size a× a

0a×b The zero a× b matrix

Xg

Other Symbols

H A hash function

InSecp(s; t, q) An insecurity function for property p (see Sect. 2.5)

Hd,i The i-th node of a Merkle tree at depth d

⊕ The bitwise XOR operation

Appendix A

Software implementation

This appendix gives an overview of the software implementations of the UOV signature
scheme and the two new signature schemes that are developed in this thesis. The source
code merely serves as a demonstration of the algorithms and is by no means a secure
implementation. For example, this implementation does not use cryptographically secure
randomness and makes no attempt at preventing cache timing attacks.

The source code is publicly available at https://github.com/WardBeullens/ThesisCode,
consists of 42 files and roughly 3000 lines of code, excluding blank lines and comments.
The source code is divided in four folders:

• common\ Contains code which is used by all 3 algorithms such as field arithmetic.
This folder also contains code for running and timing the algorithms in the “main.c”
file.

• UOVClassic\ Contains code for the implementation of UOV, with Petzold’s method
of reducing the size of the public key.

• LUOV\ Contains code for the implementation of UOV, with Petzold’s method of
reducing the size of the public key LUOV/ : Contains the implementation for a
version of UOV with public and private with coefficients in F2, but lifted to a large
extension field of F2.

• UOVHash\ Contains the implementation for a version of UOV which reduced the
public key size by using techniques from hash based crypto.

Folder Files Explanation

common\

api.h
Defines the size of the keys and signatures. This file
is required to use the SUPERCOP framework.

buffer.(h/c)
Implementation of writer and reader structs, which
are used for serializing and deserializing objects such
as keys and signatures.

csprng.(h/c),
Keccak-readable-
and-compact-c89.c

Implementation of a cryptographically secure pseudo-
random number generator based on Keccak.

69

https://github.com/WardBeullens/ThesisCode

70 APPENDIX A. SOFTWARE IMPLEMENTATION

Folder Files Explanation

common\

F16Field.(h/c),
F32Field.(h/c),
F48Field.(h/c),
F64Field.(h/c),
F80Field.(h/c),
PrimeField.(h/c)

Implements the arithmetic in the finite fields
F216 ,F232 ,F248 ,F264 ,F280 ,F31 and F127.

LinearAlgebra.(h/c)

Implementation of matrices over a finite field and
linear algebra subroutines such as matrix multi-
plication, gaussian reduction and solving systems
of linear equations.

main.c, parameters.h

Defines a main function which tests a signa-
ture scheme and reports the time and signature
sizes of the scheme. The parameters.h file deter-
mines which signature scheme is used (UOVClas-
sic, LUOV or UOVHash) and how many keys and
signatures are generated and verified.

twister.(h/c)

Implementation of the Mersenne Twister, a
pseudo-random number generator. This PRNG
is used to generate the first part of the public
key.

UOVClassic\

UOVClassic.(h/c)
Implementation of the Key generation, Signa-
ture generation and Verification algorithms of the
UOV signature scheme.

UOVClassicApi.h
Defines the size of the keys and signatures. This
file is required to use the SUPERCOP framework.

UOVClassicParameters.h
Defines q,m and v, the parameters of the UOV
signature scheme.

LUOV\

LUOV.(h/c)
Implementation of the Key generation, Signa-
ture generation and Verification algorithms of the
Lifted UOV signature scheme.

LUOVApi.h
Defines the size of the keys and signatures. This
file is required to use the SUPERCOP framework.

LUOVParameters.h
Defines r,m and v, the parameters of the Lifted
UOV signature scheme.

128Bitontainer.(h/c) Defines a struct that contains up to 128 bits.

71

Folder Files Explanation

UOVHash\

UOVHash.(h/c)
Implementation of the Key generation, Signa-
ture generation and Verification algorithms of the
UOVHash signature scheme.

UOVHashApi.h
Defines the size of the keys and signatures. This
file is required to use the SUPERCOP framework.

UOVHashParameters.h
Defines q,m, v, α, τ, κ, k and ϑ, the parameters of
the UOVHash signature scheme.

MACField.(h/c)
The implementation of arithmetic over a degree-k
field extension of Fq. The MAC polynomials are
defined with coefficients in this field.

MerkleTree.(h/c)
The implementation of the merkle tree construc-
tion.

72 APPENDIX A. SOFTWARE IMPLEMENTATION

Bibliography

[1] Nist post-quantum crypto project. http://csrc.nist.gov/groups/ST/post-quantum-
crypto/.

[2] Magali Bardet. Étude des systèmes algébriques surdéterminés. Applications aux codes
correcteurs et à la cryptographie. PhD thesis, Université Pierre et Marie Curie-Paris
VI, 2004.

[3] Magali Bardet, Jean-Charles Faugère, Bruno Salvy, and Pierre-Jean Spaenlehauer.
On the complexity of solving quadratic boolean systems. Journal of Complexity,
29(1):53–75, 2013.

[4] Daniel J Bernstein. Cost analysis of hash collisions: Will quantum computers make
sharcs obsolete? SHARCS09 Special-purpose Hardware for Attacking Cryptographic
Systems, page 105, 2009.

[5] Daniel J Bernstein, Daira Hopwood, Andreas Hülsing, Tanja Lange, Ruben Nieder-
hagen, Louiza Papachristodoulou, Michael Schneider, Peter Schwabe, and Zooko
Wilcox-OHearn. SPHINCS: practical stateless hash-based signatures. In Annual In-
ternational Conference on the Theory and Applications of Cryptographic Techniques,
pages 368–397. Springer, 2015.

[6] Luk Bettale, Jean-Charles Faugere, and Ludovic Perret. Hybrid approach for solving
multivariate systems over finite fields. Journal of Mathematical Cryptology, 3(3):177–
197, 2009.

[7] Luk Bettale, Jean-Charles Faugère, and Ludovic Perret. Solving polynomial systems
over finite fields: Improved analysis of the hybrid approach. In Proceedings of the
37th International Symposium on Symbolic and Algebraic Computation, pages 67–74.
ACM, 2012.

[8] Dan Boneh, Özgür Dagdelen, Marc Fischlin, Anja Lehmann, Christian Schaffner, and
Mark Zhandry. Random oracles in a quantum world. In International Conference
on the Theory and Application of Cryptology and Information Security, pages 41–69.
Springer, 2011.

[9] Charles Bouillaguet, Hsieh-Chung Chen, Chen-Mou Cheng, Tung Chou, Ruben
Niederhagen, Adi Shamir, and Bo-Yin Yang. Fast exhaustive search for polynomial
systems in F2. In International Workshop on Cryptographic Hardware and Embedded
Systems, pages 203–218. Springer, 2010.

73

74 BIBLIOGRAPHY

[10] Charles Bouillaguet, Pierre-Alain Fouque, and Amandine Véber. Graph-theoretic
algorithms for the isomorphism of polynomials problem. In Annual International
Conference on the Theory and Applications of Cryptographic Techniques, pages 211–
227. Springer, 2013.

[11] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology,
revisited. Journal of the ACM (JACM), 51(4):557–594, 2004.

[12] Crystal Clough, John Baena, Jintai Ding, Bo-Yin Yang, and Ming-Shing Chen.
Square, a new multivariate encryption scheme. In Cryptographers Track at the RSA
Conference, pages 252–264. Springer, 2009.

[13] Stephen Cook. The P versus NP problem. The millennium prize problems, pages
87–104, 2006.

[14] Peter Czypek. Implementing Multivariate Quadratic Public Key Signature Schemes
on Embedded Devices. PhD thesis, Ph. D. thesis, Diploma Thesis, Chair for Embed-
ded Security, Ruhr-Universität Bochum, 2012.

[15] Jintai Ding, Christopher Wolf, and Bo-Yin Yang. l-invertible cycles forMultivariate
Quadratic (MQ) public key cryptography. In International Workshop on Public Key
Cryptography, pages 266–281. Springer, 2007.

[16] Jintai Ding, Bo-Yin Yang, Chia-Hsin Owen Chen, Ming-Shing Chen, and Chen-
Mou Cheng. New differential-algebraic attacks and reparametrization of Rainbow.
In International Conference on Applied Cryptography and Network Security, pages
242–257. Springer, 2008.

[17] Léo Ducas, Alain Durmus, Tancrède Lepoint, and Vadim Lyubashevsky. Lattice
signatures and bimodal gaussians. In Advances in Cryptology–CRYPTO 2013, pages
40–56. Springer, 2013.

[18] Jean-Charles Faugere and Antoine Joux. Algebraic cryptanalysis of hidden field equa-
tion (HFE) cryptosystems using gröbner bases. In Annual International Cryptology
Conference, pages 44–60. Springer, 2003.

[19] Jean-Charles Faugère and Ludovic Perret. On the security of UOV. IACR Cryptology
ePrint Archive, 2009:483, 2009.

[20] Richard P Feynman. Simulating physics with computers. International journal of
theoretical physics, 21(6):467–488, 1982.

[21] Tim Güneysu, Tobias Oder, Thomas Pöppelmann, and Peter Schwabe. Software
speed records for lattice-based signatures. In International Workshop on Post-
Quantum Cryptography, pages 67–82. Springer, 2013.

[22] Andreas Hülsing, Joost Rijneveld, and Fang Song. Mitigating multi-target attacks
in hash-based signatures. In Public-Key Cryptography–PKC 2016, pages 387–416.
Springer, 2016.

BIBLIOGRAPHY 75

[23] Aviad Kipnis, Jacques Patarin, and Louis Goubin. Unbalanced oil and vinegar sig-
nature schemes. In International Conference on the Theory and Applications of
Cryptographic Techniques, pages 206–222. Springer, 1999.

[24] Aviad Kipnis and Adi Shamir. Cryptanalysis of the oil and vinegar signature scheme.
In Annual International Cryptology Conference, pages 257–266. Springer, 1998.

[25] Jianqiang Luo, Kevin D Bowers, Alina Oprea, and Lihao Xu. Efficient software imple-
mentations of large finite fields F2n for secure storage applications. ACM Transactions
on Storage (TOS), 8(1):2, 2012.

[26] R Garey Michael and S Johnson David. Computers and intractability: a guide to
the theory of NP-completeness. WH Free. Co., San Fr, 1979.

[27] Jacques Patarin. The oil and vinegar signature scheme. In Dagstuhl Workshop on
Cryptography1997, 1997.

[28] Albrecht Petzoldt. Selecting and reducing key sizes for multivariate cryptography.
2013.

[29] Albrecht Petzoldt, Ming-Shing Chen, Bo-Yin Yang, Chengdong Tao, and Jintai Ding.
Design principles for HFEv-based multivariate signature schemes. In International
Conference on the Theory and Application of Cryptology and Information Security,
pages 311–334. Springer, 2015.

[30] Albrecht Petzoldt, Enrico Thomae, Stanislav Bulygin, and Christopher Wolf. Small
public keys and fast verification for Multivariate Quadratic public key systems. In
International Workshop on Cryptographic Hardware and Embedded Systems, pages
475–490. Springer, 2011.

[31] Peter W Shor. Polynomial time algorithms for discrete logarithms and factoring
on a quantum computer. In International Algorithmic Number Theory Symposium,
volume 877, pages 289–289. Springer, 1994.

[32] Victor Shoup. Sequences of games: a tool for taming complexity in security proofs.
IACR Cryptology EPrint Archive, 2004:332, 2004.

[33] Alan Szepieniec, Ward Beullens, and Bart Preneel. MQ signatures for PKI. In The
Eighth International Conference on Post-Quantum Cryptography. Springer, 2017.

[34] Enrico Thomae and Christopher Wolf. Solving underdetermined systems of mul-
tivariate quadratic equations revisited. In International Workshop on Public Key
Cryptography, pages 156–171. Springer, 2012.

[35] Christopher Wolf and Bart Preneel. Equivalent keys in multivariate quadratic public
key systems. Journal of Mathematical Cryptology, 4(4):375–415, 2011.

[36] Christof Zalka. Grovers quantum searching algorithm is optimal. Physical Review A,
60(4):2746, 1999.

AFDELING
Straat nr bus 0000

3000 LEUVEN, BELGIË
tel. + 32 16 00 00 00
fax + 32 16 00 00 00

www.kuleuven.be

	Introduction
	What are signature schemes?
	Why do we need new signature schemes?
	Contributions of this thesis

	Preliminaries
	Cryptographic hash functions
	Random Oracle Model
	Quantum Random Oracle Model

	Trapdoor functions
	Hash-and-Sign signature schemes
	Digital signature forgery attacks
	Insecurity functions
	Merkle trees

	The UOV signature scheme
	 MQ signature schemes
	MQ-Problem and IP-Problem
	MQ-Problem
	Classical algorithms
	Quantum algorithms
	IP-Problem

	Description of the UOV signature scheme
	Key and signature sizes of the UOV scheme

	Equivalent secret keys
	Classical Attacks against UOV
	Direct attack
	UOV attack
	UOV reconciliation attack
	Hash collision attack

	Quantum attacks against UOV
	Direct attack and Reconciliation attack
	UOV attack
	Hash Collision attacks

	Reducing public key size by generating part of it with a PRNG
	The modified key generation algorithm
	Results

	Speeding up key-pair generation

	Reducing key sizes by lifting the UOV map
	Description of the new scheme
	Security analysis of the new scheme
	Direct attack
	Key recovery attack
	UOV attack
	UOV Reconciliation attack

	Choice of parameters
	Trade-off

	Implementation and results
	Application to other MQ signature schemes

	Reducing key sizes using Merkle trees
	Description of the new scheme
	Pseudocode

	Security analysis of the new scheme
	Multiple-target second-preimage resistance
	Multiple-target second-preimage one-wayness
	Multiple moving targets One-wayness
	Reduction to the original UOV scheme

	Small improvements
	Choice of parameters
	Implementation and results

	Multiple Signatures for each message
	Description of the new scheme
	Security Analysis of the new scheme
	AMQ Problem
	AMQ attack

	Choice of Parameters
	Implementation and results
	Application to other MQ signature schemes

	Conclusion
	Lifted UOV
	UOVHash

	Software implementation

