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Abstract

Small embedded devices are becoming omnipresent in our daily lives. Through the
rise of wireless sensor networks, ubiquitous computing and the Internet of Things,
lightweight extensible platforms are increasingly entrusted critical and privacy-
sensitive tasks. Yet, to minimise production costs and power consumption, these
devices commonly lack hardware support for conventional security measures, such as
virtual memory and processor privilege levels.

In this respect, recent research on hardware-level Protected Module Architectures
(PMAs) provides an alternative, very lightweight memory protection scheme. These
systems allow the execution of security-critical code in protected modules that are
isolated from the rest of the system, without relying on a trusted software layer to
enforce this separation. While secluding software modules in their own hardware-
enforced protection domains allows for strong security guarantees, it also limits their
ability to securely share platform resources, such as CPU time or peripheral devices.

This master’s thesis explores the feasibility of supplementing the hardware-
enforced security guarantees offered by the Sancus PMA with availability and access
control guarantees for shared system resources. In contrast to a conventional Op-
erating System (OS), an omnipotent kernel software layer is not introduced. The
main contributions of this master’s thesis are twofold. First, a generic approach
to encapsulate and control access to a shared platform resource is proposed. The
approach is implemented and evaluated for a protected file system that can control
access to either a shared memory buffer or a shared peripheral flash drive. Second,
a secure multithreading model and an accompanying unprivileged scheduler imple-
mentation are presented. The scheduler controls access to the CPU time resource
by interweaving the execution of logical threads that are conceptually isolated from
each other and that might span multiple protection domains.

The work presented in this master’s thesis shows that embedded PMAs provide
sufficiently strong hardware primitives to not only isolate software modules from
each other, but also allow secure implementation of typical OS responsibilities.
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Samenvatting

Geïntegreerde computersystemen worden steeds meer alomtegenwoordig in ons da-
gelijkse leven. Zo worden kleine, uitbreidbare computers steeds vaker ingezet voor
kritische en privacygevoelige taken. Echter, omwille van de kostprijs en het stroom-
verbruik, zijn deze apparaten doorgaans sterk beperkt in hardware-ondersteuning
voor gevestigde beveiligingsmaatregelen, zoals virtueel geheugen en beveiligingsringen
voor processors.

Recent onderzoek naar geïntegreerde beveiligingsarchitecturen stelt alternatieve
lichtgewicht geheugenbescherming voor. Daarbij is het mogelijk kritische code
in geïsoleerde, beschermde modules uit te voeren, zonder op software te moeten
vertrouwen die deze afzondering afdwingt. Software modules op deze manier in
hardware afzonderen laat zeer sterke beveiligingsgaranties toe. Anderzijds biedt
het beperkte ondersteuning voor het veilig delen van systeembronnen, bijvoorbeeld
processortijd of randapparaten.

Deze masterscriptie onderzoekt de haalbaarheid van het aanvullen van bevei-
ligingsgaranties die worden afgedwongen door de hardware met beschikbaarheids-
en toegangscontrolegaranties voor gedeelde systeembronnen. In tegenstelling tot
een traditioneel besturingssysteem wordt een almachtige kernel softwarelaag niet
geïntroduceerd. De belangrijkste bijdragen van deze thesis zijn tweevoudig. Ten
eerste stelt deze thesis een algemene aanpak voor om een systeembron te encapsu-
leren en de toegang ertoe te controleren. Deze aanpak wordt geïmplementeerd en
geëvalueerd voor een beschermd bestandssysteem dat de toegang kan controleren tot
ofwel een gedeelde interne geheugenbuffer, ofwel een gedeeld extern flashgeheugen.
Ten tweede stelt deze thesis een veilig multitasking model en een bijhorende niet-
bevoorrechte scheduler voor. De scheduler controleert toegang tot de processortijd
door de uitvoering van logische uitvoeringsthreads te verweven. Deze logische th-
reads zijn conceptueel geïsoleerd van elkaar en kunnen meerdere beschermde modules
omvatten.

Het werk gepresenteerd in deze masterproef toont aan dat geïntegreerde beveili-
gingsarchitecturen voldoende krachtige hardware primitieven bieden om niet alleen
software modules van elkaar scheiden, maar ook om veilige besturingssysteemconcep-
ten te implementeren.
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Chapter 1

Introduction

Small embedded devices are becoming omnipresent and interconnected in our everyday
lives. In an Internet of Things (IoT) where every object is represented by a networked
extensible counterpart, adequate software isolation will prove essential to ensure
our safety and privacy. Yet, to minimise production costs and power consumption,
embedded platforms [17, 20] commonly lack hardware support for established security
mechanisms, such as virtual memory and processor privilege levels. Their connectivity
and application usages on the other hand make them an interesting target for attackers.
It is therefore not surprising that various embedded system security attacks have
been described in literature [13, 53, 31, 41].

Due to the lack of lightweight memory isolation techniques, embedded devices
generally operate in a single-address-space where memory is treated as a global
resource, addressable and accessible by everyone. Software running on these devices
is thus exposed to modification by malicious or buggy programs. This is especially
problematic for reprogrammable devices [21, 10, 15] that feature runtime software
extensibility by multiple untrustworthy vendors. As a consequence, recent research on
Protected Module Architectures (PMAs) [49, 40, 47, 30] has proposed an alternative
memory protection scheme that provides strong, yet inexpensive software isolation
for embedded devices. This approach is summarised in Sect. 1.1 and it is explained
how current PMAs offer limited support for shared system resources. Section 1.2
thereafter summarises the contributions of this master’s thesis that proposes and
implements an approach to securely share system resources on embedded PMAs.
The structure of the thesis text is outlined in Sect. 1.3.

1.1 Protected Module Architectures

PMAs [49, 47] provide fine-grained memory isolation guarantees in a single-address-
space. In short, these architectures allow a programmer to define Self-Protecting
Modules (SPMs) with a code and a data section to allow the isolated execution of
security-critical code portions. The key characteristic of an SPM is that its private
data section is exclusively accessible from its corresponding code section, which can
only be entered from a few predefined entry points. An SPM could therefore be
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1. Introduction

thought of as a standalone enclave in the shared address space. As suggested by its
name, a self-protecting module is solely responsible for its own private data section.
Attackers from the outside can never directly access the protected data.

PMAs for conventional high-end computer systems have successfully been im-
plemented as an additional layer of protection enforced by a small hypervisor [48]
or incorporated in a commodity Operating System (OS) kernel [3]. Hardware-level
PMAs [40, 30] on the other hand enforce memory protection through an efficient
hardware mechanism [49] that uses the value of the current program counter to decide
access to a memory location. As such, hardware-level PMAs can offer an inexpensive,
yet substantive memory protection scheme for small embedded devices. Apart from
being lightweight, hardware-enforced PMAs are promising because they can isolate
SPMs in the shared address space, without relying on any trusted software layer. In
this respect, the Trusted Computing Base (TCB) denotes the set of hardware and
software components that need to be trusted to ensure the correct execution of a
user program. The larger the software part of the TCB, the more likely it contains
low-level vulnerabilities that can be exploited using well-known techniques [18] to
jeopardise the entire system.

An important advantage of hardware-level PMAs [40, 30] is that they explicitly
exclude the OS kernel from the TCB for memory isolation. Confining SPMs in
their respective protection domains however also limits their ability to share system
resources, such as CPU time or peripheral devices. That is, SPMs should always fulfil
their own needs; the only way in which they can get availability or access control
guarantees for a platform resource is to claim the resource for themselves. To see how
this implies poor flexibility vs. protection guarantees, consider an SPM that denies
others access to a peripheral flash drive in order to protect the confidentiality and
integrity of its own data, or an SPM that monopolises CPU time to be guaranteed
availability at all time. This is evidently undesirable in an embedded context, where
system resources are scarce and should be shared among multiple inter-untrustworthy
software modules.

1.2 Contributions

This master’s thesis explores the possibility of supplementing the hardware-enforced
security guarantees offered by embedded PMAs with OS-like availability and access
control guarantees for shared system resources. The work of this master’s thesis
is based upon Sancus [40], a low-cost zero-software PMA explicitly targeted at
embedded devices. More specifically, the following contributions are made:

• The minimal set of hardware primitives that need to be provided by a PMA to
securely allow the software implementation of OS-like services is identified. An
approach to implement OS responsibilities on top of the Sancus architecture is
proposed. This approach does not introduce a traditional omnipotent kernel
software layer, but rather encapsulates OS concepts in their own unprivileged
modules to realise policies not offered by the hardware.

2



1.3. Outline

• A generic access control mechanism is proposed to securely share resources
that are being accessed through the memory address space. The approach is
implemented and evaluated for a protected file system that can control access to
either a shared memory buffer, or a peripheral Memory-Mapped I/O (MMIO)
flash drive. The security guarantees and general applicability of the resource
sharing approach are discussed.

• Sancus’ existing implicit control flow model is secured by inserting compiler-
generated runtime checks at the boundaries of protected modules.

• A multithreading model for Sancus and an accompanying protected scheduler
implementation are provided. The approach allows to control access to the more
abstract CPU time resource, supplementing the hardware-enforced security
guarantees for SPMs with availability guarantees for logical threads. The
security and availability guarantees of the prototype are discussed.

The source code of the protected file system and the secure scheduler is publicly
available at https://github.com/jovanbulck/thesis-src.

1.3 Outline
The remainder of this text is organised as follows:

Chapter 2: Background This chapter introduces the relevant software security
background for this master’s thesis. First, conventional software isolation
techniques, their downsides and existing mitigations are discussed. Thereafter,
PMAs are introduced as an alternative way of isolating software and a general
overview of this recent research area is provided.

Chapter 3: Embedded Protected Module Architectures This chapter is ded-
icated to the problem domain of embedded PMAs and formulates the research
objectives. First, a detailed overview of Sancus [40], the development platform
for this master’s thesis, is provided. Sancus is thereafter briefly compared
to Trustlite [30], another hardware-level embedded PMA. The final part of
this chapter proposes an approach to securely implement OS-like services on
top of these architectures. It is explained how this allows to supplement the
hardware-enforced security guarantees for protected modules with software-
based availability and access control guarantees for shared system resources.

Chapter 4: Logical File Access Control This chapter presents a protected file
system implementation for the Sancus platform. The file system serves as a
case study of encapsulating and controlling access to a shared system resource
through a lightweight protected software layer on top of hardware-enforced
mechanisms. This chapter includes a runtime overhead analysis of the prototype
and discuses the security guarantees and general applicability of the resource
sharing approach.

3
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1. Introduction

Chapter 5: Secure Scheduling This chapter presents a secure multithreading
scheme and accompanying scheduler for the Sancus platform. First, existing
ideas and challenges to implement multithreading in a protected single-address-
space are reviewed. Thereafter, security improvements to Sancus’ existing
implicit control flow model are described and a logical threading model and
scheduler implementation are provided. The final part of this chapter discusses
the security/availability guarantees of the current prototype, compares the
approach to other PMAs and elaborates on the possibility of future hardware
support for preemption.

Chapter 6: Conclusion This chapter concludes the thesis text. The contributions
are summarised, limitations are acknowledged and future work directions are
provided.
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Chapter 2

Background

To enforce security guarantees, a computer system should be able to protect the
internal state of a running software entity against other potentially malicious entities.
This is referred to as software isolation. Traditionally, isolating software is a well-
known requirement and an active research field. Consequentially, well-understood
solutions for commodity high-end computing platforms have been established over
the past decades. The recent rise of low-end embedded devices has triggered research
for radically new lightweight software protection mechanisms. This chapter aims at
providing an overview of conventional as well as novel software isolation techniques.
As such this chapter presents the relevant software security background for this
master’s thesis.

The explanation is organised as follows. Section 2.1 first discusses established
isolation techniques and elaborates on how the associated downsides can be mitigated.
Section 2.2 thereafter presents Protected Module Architectures (PMAs) as a novel
research field that offers a viable alternative to conventional isolation. Finally,
Sect. 2.3 formulates a conclusion for this chapter.

2.1 Conventional Software Isolation

On conventional high-end computing devices software isolation is a fundamental
requirement that is typically realised by a trusted OS, backed by advanced hardware
support. Section 2.1.1 summarises this traditional approach and Sect. 2.1.2 dis-
cusses some of its known drawbacks and alternatives. The previous chapter already
mentioned that embedded microcontrollers are constrained by economic and power
consumption considerations. They therefore commonly lack the hardware resources
needed for traditional software isolation. Section 2.1.3 summarises existing ways of
isolating software on these devices.

2.1.1 Operating System Isolation

Conventional computer systems [4, 46, 50] rely on hardware support for processor
privilege levels and virtual memory to enforce isolation for the OS and between
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2. Background

different applications. Virtual memory techniques introduce a level of indirection
between the (virtual) addresses used by programs and the actual locations in physical
memory. A dedicated Memory Management Unit (MMU) hardware component is
responsible to automate the virtual-to-physical address mapping. Paged virtual
memory, the most widely used set-up, stores the virtual-to-physical translation data
in an in-memory page table and supplements the MMU with a translation look-aside
buffer to speed up subsequent memory accesses.

Conventional OSs allocate a separate page table per process and update an
MMU register that points to the current in-memory page table on context switch.
Confining processes in private virtual address spaces has two main advantages. First,
each process has the entire virtual address space at its disposal. Processes should
therefore not worry about the size and current usage of physical memory. Second,
private virtual address spaces provide memory isolation between processes. Indeed,
since each process has its own virtual-to-physical address mapping, process A cannot
access the physical memory assigned to process B (unless such a mapping is explicitly
created to realise shared memory).

Memory protection guarantees via private address spaces of course only hold
if user programs are prevented from compromising the OS, or from changing the
page table themselves. Conventional computer systems therefore rely on hardware-
enforced processor privilege levels, also called protection rings, that allow the OS
kernel to run more privileged. Regular user programs can request services from the
privileged OS through system calls. Such a system call generates a hardware trap
that switches to privileged mode and starts executing the appropriate kernel code.

2.1.2 Issues with Conventional Isolation

The above traditional way of isolating software has several well-known drawbacks and
researchers have been trying to mitigate them for decades. The following summarises
the major drawbacks and proposed alternatives.

Trusted Computing Base

The above way of isolating software relies on a layered design where user programs
trust and rely on the services of the kernel software layer. This implies that a
single vulnerability or bug in the omnipotent kernel jeopardises the entire system,
as demonstrated by kernel-level malware. In this respect, the TCB denotes the set
of hardware and software components that need to be trusted to ensure the safe
execution of a software program. The privileged OS kernel software layer thus belongs
to the TCB of any user program. This is problematic from a security perspective
for two reasons. First, commodity OS kernels are typically written in an unsafe
language such as C. This makes them vulnerable to well-known low-level software
attacks [18]. Second, commodity OS kernels consist of millions of lines of code1,

1To give an indication of the size and complexity involved: version 3.18 of the Linux kernel
consists of almost 19 million lines of code [12] and Microsoft’s Windows XP allegedly contains 45
million lines of code [37].
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2.1. Conventional Software Isolation

which makes it practically impossible to secure them against these attacks. The
large size results from their monolithic architecture. That is, most OSs implement
all services – scheduling, memory management, file systems, device drivers, etc. – in
a single kernel program.

As a response, the microkernel architecture [33, 34, 50], depicted in Fig. 2.1, limits
the TCB by reducing the size of the trusted kernel layer. The key idea of a microkernel
is to implement all non-essential OS services as regular user programs, referred to
as servers. User programs and servers always communicate indirectly through the
microkernel. The privileged microkernel is therefore solely responsible to separate
user processes and to provide Inter-Process Communication (IPC) between them.
The actual OS services are implemented in user space on top of these abstractions.
While microkernels are superior from a security perspective, they have never gained
ground in commodity OSs – due to a variety of reasons, including complexity and
initial performance issues [34].

Hardware
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Basic IPC, Virtual Memory, Threading
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Figure 2.1: Microkernel architecture with server processes in user space

The TCB consequences of a layered monolithic architecture can also be mitigated
by enforcing a modular design. Witchel et al. [54] employ a combination of hardware
and software techniques, known as Mondriaan memory protection, to enforce memory
isolation of Linux kernel modules. Their approach prohibits a kernel module from
accessing another module’s memory directly. A vulnerability in one such module (e.g.
a device driver) does therefore not jeopardise the entire monolithic kernel program.

Apart from reducing the kernel’s size, another strategy to increase its trustworthi-
ness is by formally verifying parts of it. Research on formal verification [43, 38] has
indeed proven memory safety of parts of the Linux kernel. While completely verifying
a large monolithic kernel such as Linux is infeasible, the functional correctness of
the seL4 microkernel implementation has been entirely verified [28]. From a security
perspective, such a verified OS kernel remains part of the TCB, but becomes trust-
worthy. That is, applications that build upon the kernel are provided with strong
formalised assurances, as opposed to the implicit entangled TCB of legacy OSs.

7



2. Background

Coarse-Grained Protection

In a conventional OS that provides software isolation via private address spaces,
the process as the unit of multiprogramming coincides with the unit of memory
protection. In the context of increasingly complex, extensible and object oriented
applications however, one could argue that this unit is too coarse-grained. A 1994
paper already addresses the problem: “private-address-space systems force poor
tradeoffs between protection, performance, and integration. [...] applications need
better control of protection and sharing than current systems can provide.” [9].

A private virtual address space per process is needed to be able to re-use virtual
addresses in restricted address spaces (≤ 32 bit). The rise of wide-address (64 bit)
architectures in the early nineties however rendered this use of private address spaces
superfluous. As a result, researchers [8, 9] devised single-address-space OSs that
place all processes in a single global virtual address space and realise alternative fine-
grained protection domains on top. All programs execute in the same address space,
but their memory access rights within this shared address space are determined
by their current protection domain. As such, single-address-space OSs separate
addressability from accessibility.

Capability-based systems represent another approach to provide fine-grained
memory access control in a shared address space. While capability-based systems are
an historical [7] research direction, they are currently reviving. The recent cheri [55]
system features a hardware-based capability implementation that offers fine-grained
protection domains inside the virtual address space of a conventional OS process.
Access rights for memory blocks are represented by capabilities and an executing
program is granted access to all memory that is described by its current set of
capabilities. A capability can be thought of as an unforgeable memory pointer that
is specially tagged and that includes additional meta data, such as an offset and
permission fields. Capabilities describe access rights to a memory block and are
themselves stored in memory. A program that holds a capability is therefore granted
access to the corresponding memory block, which may contain other capabilities to
extend the memory access rights once more. To prevent applications from defining
their own memory access rights, valid capabilities include a special tag that can only
be set by a privileged OS kernel [7] or through special hardware instructions [55].
Since capabilities can be passed freely along, or used to create more restrictive
capabilities, capability-based addressing simplifies sharing, but makes revocation of
previously assigned access rights more difficult.

2.1.3 Embedded Software Isolation

Due the limited resources and specialised needs of embedded devices, a heterogeneous
range of small dedicated OSs [20, 56, 17] has emerged in recent years. Initially, these
OSs assumed a single, static application. Hence, no need for memory protection: the
embedded application was statically linked with the OS into a single monolithic image,
sharing an unprotected single-address-space [20]. While embedded OSs nowadays
commonly feature concurrency and dynamic reprogramming to update or install
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2.2. Protected Module Architectures

new applications at run time [21, 10, 15], support for memory protection is non-
existing or remains very limited. The reason is that resource-constrained embedded
microcontrollers generally lack hardware support for established security mechanisms,
such as virtual memory and CPU privilege levels. Several authors [17, 21, 24] foretell
that these hardware constraints will endure, due to low-power requirements.

Considerable research effort has been put in providing software isolation and
OS protection for embedded microcontrollers that lack related hardware support.
Safe TinyOS [11] provides efficient type and memory safety by modifying code at
compile time. t-Kernel [24] on the other hand provides virtual memory, preemptive
scheduling and OS protection by modifying untrusted application code at load
time. Both approaches decrease performance and rely on a software TCB to enforce
memory protection. The next section introduces a novel hardware memory protection
mechanism suitable for efficient runtime memory access control on small devices.

2.2 Protected Module Architectures
The above discussion introduced several issues concerning the way software isolation
is traditionally realised. Consequently, recent research on Protected Module Architec-
tures (PMAs) [49, 47] attempts to realise fine-grained memory protection guarantees
with a moderate-sized TCB. In short, these architectures allow a programmer to
define standalone modules with a code and data section so that security-critical code
fragments can be executed in their own protection domain, isolated from the rest of
the system.

The explanation is organised as follows. Section 2.2.1 first introduces the concept
of a protected software module. Section 2.2.2 thereafter elaborates on the provided
security guarantees and Sect. 2.2.3 finally provides an overview of the existing PMA
implementations.

2.2.1 Self-Protecting Modules

A Self-Protecting Module (SPM) corresponds to a fine-grained protection domain in
a shared address space. The layout of an SPM is depicted in Fig. 2.2 and consists
of two contiguous memory sections: a public text or code section containing a fixed
number of entry points and a private data section. The key characteristic is that
an SPM’s private data section is exclusively managed by its corresponding code
section, which is only entered from a few predefined entry points. An SPM could
therefore be thought of as a standalone enclave in unprotected memory. Attackers
from outside can never directly access the protected data; a self-protecting module is
solely responsible for its own private data section, hence its name.

The concept of SPMs is of course only useful if it can be enforced in a reliable
and efficient way. In this respect, program counter based access control [49] is a novel
lightweight memory protection technique that uses the current value of the program
counter to decide access to a memory location. An SPM can be unambiguously
defined in the single-address-space through simple program counter based access
control rules in an access control matrix. Table 2.1 lists such memory access rights
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SPMA
Code

Unprotected
memory

SPMA
Data

Unprotected
memory

Unprotected
memory

0x0000 0xFFFF

Figure 2.2: Layout of a protected module SPMA in the shared address space (gray
areas represent protected memory and black squares represent entry points)

for an SPM in the traditional UNIX notation. All memory addresses are categorised
as either “protected”, that is belonging to the SPM, or “unprotected”. Protected
memory is further subdivided as belonging to an entry point, a code section or
a data section. The columns of the table categorise the memory location being
accessed, whereas the rows categorise the current value of the program counter. Note
that when deciding access to an SPM the program counter is only categorised as
“protected” when corresponding to an address within the code section of the same
module (i.e. any other module is treated as if it where unprotected). The program
counter based rules in Table 2.1 thus enforce that (i) the code section of an SPM is
read-only, (ii) program flow only enters an SPM through one of its predefined entry
points, and (iii) the data section of an SPM is only accessible when executing in its
corresponding code section.

Table 2.1: Program counter based access control rules for an SPM

From \ to Protected Unprotected
Entry Code Data

Protected r-x r-x rw- rwx
Unprotected / other SPM r-x r-- --- rwx

2.2.2 Security Guarantees

SPMs are realised by a Protected Module Architecture (PMA) implementation,
as discussed in the next section. Such a PMA typically provides SPMs with the
following security guarantees.

Secure Control Flow As explained above, the code section of an SPM can only
be entered via a few predefined entry points. That is, an attacker cannot jump to
arbitrary code in the SPM. This prevents him from abusing useful code snippets [45]
that operate on private data or from bypassing security-sensitive code (such as access
control or encryption functionality). Furthermore, SPMs should maintain their own
private call stack to save i.a. function return addresses. Such a safe stack, as initially
proposed by Kumar et al. [32] and formalised by Agten et al. [2], ensures that control
flow within an SPM protection domain cannot be influenced from outside.
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Secrecy of Private Data SPMs are provided with exclusive read and write access
to their private data section. This allows a programmer to implement for example a
cryptographic module that saves the secret key in its private data section and safely
offers encryption/decryption facilities towards others. Such an SPM remains respon-
sible however for the correct implementation of its code section. More specifically, to
ensure confidentiality and integrity of the private data section, the corresponding
code section should not leak private data and should not be vulnerable to low-level
security attacks [18] such as buffer overflows that might tamper with the private data
or alter control flow within an SPM. Consequently, the TCB of an SPM consists
of (i) the TCB needed to realise the PMA implementation that enforces the SPM’s
access rights, and (ii) the SPM’s own code section.

Authentication To build flexible trustworthy systems, reliable authentication of
running SPMs is essential. To do so, support from the PMA implementation is needed.
The exact authentication mechanism and guarantees therefore depend on the specific
PMA [49, 40, 48, 30]. In general however, to unambiguously identify a running SPM,
one minimally needs (i) a cryptographic hash of the code section, and (ii) the exact
load addresses of the code and data sections (since the content of the relocatable code
section depends on it). Once provided with this information, a cryptographic hash of
the publicly readable code section can be calculated and compared to authenticate
the identity of the running SPM. For reliable authentication however, one still needs
a guarantee that the SPM being verified is still loaded and protected correctly. Such
a guarantee should be provided by the supporting PMA’s interface, as explained
further on.

How exactly the above information is provided depends on the PMA implementation.
Strackx et al. [49, 48] for example propose to accompany each SPM with a security
report that contains i.a. the memory layout and a cryptographic hash of the code
section. Since the security report is signed with the private key of the issuer, SPMs
can verify the trustworthiness of the report through a chain of trust to a known
certificate authority. Noorman et al. [40] avoid the use of public key cryptography
by deploying the calling SPM with a Message Authentication Code (MAC) of the
code section and load addresses of the callee.

Secure Communication Strackx et al. [49] show how to set up a secure local
communication channel between SPMs that ensures mutual authentication, confi-
dentiality and integrity of the passed data. Their approach relies on reliable SPM
authentication and assumes the absence of interrupts. A one-way authenticated
channel is set up as follows. First, the calling SPM authenticates the SPM being
called. Next, the caller jumps to the callee’s desired entry point, passing any argu-
ments safely through CPU registers. Finally, the callee returns to the caller. To do
so however, the callee needs the return address. Recall that SPMs have their own
private call stack and can only be entered from a few predefined entry points. This
implies that (i) the calling SPM should pass the return address as an argument,
and (ii) this continuation point cannot simply be the address following the call
instruction. Strackx et al. [49] therefore propose to pass the address of a special
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return entry point in the calling SPM that restores the internal private call stack
and continues internal execution after the call instruction. Moreover, the callee can
use the provided address of this entry point to identify and verify the calling SPM,
resulting in a mutually authenticated communication channel for return values.

Note that confidentiality and integrity of the passed data is guaranteed because
the caller places them in CPU registers before executing an unconditional jump to
the callee. This implies that – in the absence of interrupt – only the caller and
the callee can see or modify the data. Passing data via CPU registers of course
limits the number and size of the arguments. To overcome these limitations, multiple
subsequent calls may be used or data can be passed through unprotected memory in
encrypted form.

2.2.3 Implementations

As mentioned above, the security guarantees for SPMs should be implemented
by a Protected Module Architecture (PMA). Such a PMA can be realised on
different levels, depending on the application scenario. This section discusses PMA
implementations in hardware, through a trusted hypervisor and incorporated in a
trusted OS kernel. Each of these implementations has its own advantages in terms
of performance, cost and portability. Moreover, since the PMA enforces the access
control rights for SPMs, it is naturally incorporated in the TCB. The choice of the
implementation level therefore also defines the size of the TCB.

Hardware-Level Implementation

Hardware-level PMAs implement some form of program counter based access control
in hardware and extend the instruction set to allow the safe creation of SPMs in the
shared address space. The prime advantage of these PMAs is that they feature a
small hardware-only TCB. SPMs in these systems indeed rely solely on the correct
functioning of the hardware for their security guarantees. Moreover, the modified
memory access semantics can be enforced efficiently through a lightweight program
counter based access control hardware mechanism that does not increase the memory
access time [40, 30]. One of the downsides of a custom hardware implementation
however, is that portability of legacy applications is obviously hindered.

Recall from Sect. 2.1.3 that embedded platforms commonly lack hardware support
for virtual memory and therefore need an alternative low-cost software isolation
scheme. In this context, hardware-only PMAs look particularly interesting as they
provide a lightweight, yet substantive memory protection mechanism. Strackx et
al. [49] first proposed the general idea of SPMs and program counter based access
control as an efficient memory isolation technique for embedded devices. Noorman et
al. [40] presented Sancus, a hardware-only PMA explicitly targeted at small embedded
devices and the development platform for this master’s thesis. Koeberl et al. [30]
presented Trustlite, a hardware-enforced PMA that features an execution-aware
memory protection unit for small computing devices. Given the importance of the
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embedded PMA research field for this master’s thesis, a detailed explanation of the
Sancus platform and a comparison to Trustlite are presented in Chapter 3.

The recently proposed Intel Software Guard Extensions (SGX) [36, 27] represent
a different research direction that employs a hardware-level PMA. In contrast to
the embedded approach above, SGX is a set of hardware extensions for high-end
multiple-address-space PCs and servers. SGX does not consider program counter
based access control as a standalone memory protection mechanism, but rather as a
means to complement the existing coarse-grained virtual memory protection scheme.
SGX thus allows for hardware-enforced security guarantees in a conventional high-end
untrusted execution environment. To this end, SGX extends the Intel architecture
with new instructions that allow the creation, destruction, entering and exiting of
hardware-protected enclaves within an application’s private virtual address space.
SGX’s hardware model allows a conventional OS to take care of virtual memory
translation and swapping of enclave pages, but regards such an OS as an untrusted
agent. Furthermore, SGX enclaves feature multiple internal control flow threads that
can be interrupted at any time, as discussed in more detail in Sect. 5.1.3.

Hypervisor-Level Implementation

The Fides system [48] represents another way of implementing PMAs through a small
hypervisor software layer that isolates SPMs in a separate secure virtual machine.
Such a hypervisor-level implementation has the advantage that it does not require
changing the hardware, at the cost of only a moderate-sized TCB. Fides allows a
programmer to define seamlessly integrated SPMs within an application’s virtual
address space. Fides therefore demonstrates the feasibility of realising PMAs while
remaining compatible with legacy hardware and OSs.

The Fides architecture consists of an omnipotent hypervisor bottom layer that
keeps track of two separate virtual machines, one for the legacy OS and one for
a security kernel that manages SPMs. Both virtual machines have the same view
on physical memory, but the hypervisor enforces different access rights. It makes
sure that the memory belonging to an SPM cannot be accessed by the legacy OS.
The hypervisor thus enforces coarse-grained memory protection guarantees, whereas
the fine-grained SPM access control model is enforced by a small dedicated security
kernel. As such, secure SPM execution relies on the hypervisor implementation as
well as the security kernel, which together represent a relatively small TCB of 7,159
lines of code [48].

The key advantages of the Fides architecture are its compatibility with legacy
hardware and software and the fact that the legacy OS is excluded from the TCB
for secure SPM execution. Moreover, the performance penalty is acceptable since
the hypervisor only needs to switch the virtual machines when entering or exiting an
SPM. The Fides architecture inevitably depends on hardware support for processor
privilege levels and virtual memory however. This makes a hypervisor-level solution
unsuitable for embedded devices.
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Kernel-Level Implementation

The Salus system [3] provides a PMA implementation by extending the Linux kernel.
Salus employs SPMs as an additional fine-grained layer of protection inside the
virtual private address space of a Linux process. Recall from Sect. 2.1.2 that an
application programmer in a conventional multiple-address-space OS environment is
obligated to compromise between protection and performance. The key advantage
of Salus is therefore that it allows a single process to consist of multiple logical
protection domains where a vulnerability in one SPM cannot affect the others. To
this end, Salus also includes a privilege containment mechanism to limit the system
calls that can be used by a specific SPM.

While such an implementation is interesting from a pragmatic point of view,
it also enlarges the TCB. In contrast to the above PMAs, Salus does not execute
SPMs in an isolated part of the system. A single vulnerability in the omnipotent
monolithic kernel layer indeed suffices to invalidate the security guarantees for SPMs.
Moreover, a kernel-level implementation inevitably relies on hardware-support for
processor privilege levels and is therefore unsuitable for embedded devices.

2.3 Conclusion
Adequate software isolation through memory protection is imperative to enforce
security guarantees for a shared computing platform. Well-understood protec-
tion mechanisms have been established for classical computer systems. The most
widespread approach isolates processes in their own private virtual address space
through a trusted OS that is shielded from the applications. Important well-known
disadvantages of such an approach include (i) a large TCB that incorporates the
OS kernel, and (ii) the lack of additional fine-grained protection domains inside
the virtual address space of a process. Moreover, the approach inevitably relies on
hardware support, which is not widely available for embedded systems – to minimise
production costs, as well as power consumption.

Consequentially, recent research on PMAs attempts to provide inexpensive and
fine-grained protection domains in a shared address space, while keeping the TCB
small. This chapter discussed PMAs that allow hardening security critical applications
on conventional high-end computers, but also mentioned lightweight hardware-level
PMAs that can offer a standalone substantive memory protection model for low-end
embedded devices. The next chapter elaborates further on embedded hardware-level
PMAs and the consequences of a zero-software TCB that excludes the OS kernel.
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Chapter 3

Embedded Protected Module
Architectures

The previous chapter introduced the general research area on PMAs and their
relevance in an embedded context. Since this master’s thesis builds upon Sancus,
a hardware-enforced PMA for small embedded devices, this chapter is entirely
dedicated to the problem domain of embedded hardware-level PMAs and formulates
the research objectives.

The chapter is organised as follows. Section 3.1 first provides a detailed description
of Sancus, the development platform for this master’s thesis. Next, Sect. 3.2 briefly
contrasts the Sancus architecture with Trustlite, a similar embedded hardware-level
PMA with a different access control approach. Section 3.3 thereafter discusses the
consequences of a zero-software TCB that excludes the OS kernel and explains how
this requires reconsidering traditional OS concepts. This section thus contextualises
the goal for this master’s thesis: providing secure resource sharing for embedded
PMAs without introducing an omnipotent trusted kernel software layer. Section 3.4
finally concludes.

3.1 Sancus

The previous chapter already mentioned the Sancus platform [40] as a hardware-
only PMA implementation that is explicitly targeted at low-end extensible devices.
Sancus extends the memory access model and instruction set of a TI MSP430
microcontroller to provide hardware-enforced memory isolation guarantees for Sancus
Modules (SMs). Note that an SM is a realisation of the abstract concept of a
Self-Protecting Module (SPM), as introduced in Sect. 2.2.1. Therefore, everything
presented here for SMs can also be mapped on the more generic concept of SPMs.

The work presented in this master’s thesis is built upon Sancus for two major
reasons. First, Sancus is an active research project at KU Leuven and its source code
is publicly available [39], allowing for extensibility where needed. Second, Sancus
features unique caller authentication hardware instructions that will prove essential
for this master’s thesis.
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The following provides a detailed overview of the Sancus system and its internals.

3.1.1 Attacker Model

Sancus protects the internal state of SMs against a powerful attacker which may
deploy or tamper with any software running on the node. More specifically, an
attacker can address the whole single-address-space, but Sancus’ modified memory
access logic may disallow access to protected memory depending on the current value
of the program counter. An attacker may control all unprotected code, for example
the node’s OS or shared libraries such as libc. Since SMs do not necessarily have to
trust each other, Sancus also protects against an attacker that can deploy arbitrary
malicious SMs on the node. Finally, an attacker may control the communication
channel between the node and the software provider.

Sancus does not protect against hardware-level attacks however. An attacker
with physical access to the node may for example extract memory content via a
cold-boot attack [25]. Sancus, like other PMAs, does also not protect SMs against
implementation vulnerabilities in their own code section, as previously discussed in
Sect. 2.2.2.

3.1.2 Dynamic Deployment Model and Key Management

Sancus is especially interesting for small devices that feature extensibility with
software modules from multiple inter-untrustworthy stakeholders. In such a system,
adequate isolation of SMs in the shared address space is indeed essential. Sancus
supports a generic multiple stakeholder model where an infrastructure provider IP
governs a number of low-end computing devices, referred to as nodes Ni. External
software providers SPj that are recognised by IP may deploy software modules
SMj,k on the nodes.

Sancus allows a secure mutually authenticated communication channel between
SMs running on the same node and between an SM and its remote software provider.
To this end, Sancus features hardware extensions and a key derivation scheme to
establish a symmetric cryptographic key that is shared by an SM and its software
provider SP . The infrastructure provide IP acts as a trusted party that shares a
symmetric key KN with each of its administered nodes. To make sure the node’s
key KN is kept secret at all time, KN is exclusively managed by hardware on the
Sancus-enabled node. IP uses its copy ofKN and a non-secret key derivation function
kdf to generate a new key for each software provider, identified by a non-secret SP
identifier:

KN,SP = kdf(KN , SP ) (3.1)

IP distributes these keys to the corresponding software providers. In the end, the
software provides want to share a symmetric key with the SMs they deploy on IP ’s
nodes. To so, they need to know the module’s identity, consisting of (i) the module’s
code section, and (ii) the load addresses of the code and data sections. An SM’s
identity may not be known until after the module is loaded in a dynamic deployment
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scenario. In such a case, untrusted software running on the node may simply send a
symbol table containing the load addresses to the software provider. Provided with
SMidentity and KN,SP , the software provider generates a module-specific key:

KN,SP,SM = kdf(KN,SP , SMidentity) (3.2)

It follows from Eqs. (3.1) and (3.2) that provided with the non-secret SP and
SMidentity information and the secret KN key, a hardware implementation of the
kdf function can calculate the module-specific key on the node as follows:

KN,SP,SM = kdf(kdf(KN , SP ), SMidentity) (3.3)

Sancus-enabled nodes stores one such key for each SM in a protected storage area
that is only indirectly accessible through hardware instructions. Since KN,SP,SM

depends on the identity of the corresponding SM, the load process should not be
trusted. That is, if the load process changes the content of the code section before
enabling protection or sends false load addresses to the software provider, the node’s
hardware and the software provider won’t share a symmetric key. This follows
from the fact that a software provider knows the content of the code section of
the SM it deploys and combines this with the load addresses to generate his key
KN,SP,SM according to Eq. (3.2). This key will differ from the hardware-generated
key KN,SP,SM of Eq. (3.3) if either the content of the code section or the load
addresses differ. As explained further on, the module-specific key KN,SP,SM can
therefore safely be used for local or remote authentication.

3.1.3 Sancus Module Isolation

As discussed in Sect. 2.2.2, PMAs offer two basic security guarantees towards SMs:
entry point restriction and secrecy of the private data section. Sancus implements
entry point restriction in hardware by enforcing program flow can only enter an
SM through the start address of its corresponding code section, referred to as the
physical entry point. Section 3.1.7 explains how SMs employ this single physical
entry point for private call stack switching and multiplexing of multiple logical entry
points. Sancus furthermore implements program counter based memory isolation
by means of a custom Memory Access Logic (MAL) hardware circuit for every SM.
These circuits use simple combinational logic to ensure that the private data section
of an SM is only accessible when the current value of the program counter lies within
the bounds of its corresponding code section. The layout information of an SM (i.e.
start and end addresses of the code and data sections) is stored in dedicated registers
of a protected storage area that is only accessible from hardware. The use of parallel
combinational hardware circuits ensures that the modified memory access semantics
are enforced without increasing memory access time. The maximum number of SMs
is imposed at hardware synthesisation time, since Sancus needs one MAL circuit per
SM.

After loading an SM’s code section in memory, a programmer can use the
sancus_enable hardware instruction to enable memory protection for the SM. This
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instruction requires the SM’s layout as an argument, i.e. the start and end addresses
of the module’s code and data sections. After verifying that the provided address
ranges do not overlap with existing SMs, the instruction stores them in the protected
storage area to instantiate a new MAL circuit. The sancus_enable instruction
furthermore requires the software provider’s SP identifier as an argument so that
it can generate the module-specific key KN,SP,SM according to Eq. (3.3). This key
is stored in the protected storage are as well and may be used by other hardware
instructions. Recall from the above that the hardware-generated key will differ from
the one of the software provider if an attacker tampers with the module before
enabling protection. Finally, the sancus_enable instruction zeroes out the content
of the private data section to make sure an attacker does not have any influence
on the initial state of a module. The sancus_enable instruction returns a status
flag to indicate whether the call was successful. Figure 3.1 provides a graphical
representation of the protected storage area after enabling a module SM1.
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Figure 3.1: Layout of a Sancus module SM1 in the shared address space and
protected storage area (from [40])

Since SMs can choose their own layout (on a first-come, first-served basis),
Sancus’ generic memory protection scheme can be used to secure Memory-Mapped
I/O (MMIO) peripherals that are being accessed through the memory address space.
It suffices indeed to include the relevant MMIO addresses in the private data section
of an SM to provide it with exclusive access to the device. There is one pitfall however:
the MAL circuits presented above currently only allow a single contiguous private
data section per SM. This implies that a module including a MMIO address range
in its private data section, cannot at the same time store protected data. Moreover,
as it cannot safely provide the call stack needed by higher level programming
languages, its corresponding code section should be entirely implemented in assembly.
These limitations call for small dedicated driver SMs that restrict access to MMIO
peripherals, as illustrated in the next chapter.

A programmer can use the sancus_disable instruction to disable memory pro-
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tection for the currently executing SM, if any. This instruction clears the corre-
sponding entry in the protected storage area and disables the MAL circuit. An SM
should clear any remaining secrets in its private data section itself before calling the
sancus_disable instruction.

When one of the MAL circuits detect a memory access violation, a non-maskable
interrupt is generated.1 On such an interrupt, the hardware jumps to the address of
the Interrupt Service Routine (ISR) that is registered in the corresponding entry of
the interrupt vector table (which is at a fixed location in the TI MSP430’s memory).
Since the currently executing program performed an illegal memory access, it cannot
be continued normally and the ISR typically halts the system. Remark that Sancus
currently offers no availability guarantees whatsoever, an attacker or buggy SM
can for example perform an illegal memory access to halt the system or execute an
infinite loop to monopolise CPU time.

3.1.4 Secure Linking

Sancus features a strong authentication mechanism that allows a module SM1 to
reliably call another module SM2 running on the same node. More specifically, SM1
can be ensured before calling SM2 that (i) protection has been correctly set up for
SM2 as explained above, and (ii) the code section of SM2 has not been tampered
with. To this end, Sancus offers a sancus_verify_address instruction that requires
two arguments: the expected address of SM2 and a MAC of the identity of SM2
calculated with the module-specific key of SM1. Since the software provider of SM1
knows its module-specific key, it can supply SM1 with the MACs of all the SMs it
needs to call, either at deployment time or at run time (to be explained below). The
sancus_verify_address instruction first verifies whether an SM is currently loaded
at the expected address. If this is the case, the instruction computes the MAC of
that module using the module-specific key of the calling SM. Finally, the instruction
compares the provided MAC with the computed MAC and returns zero if they are
not equal.

Since calculating a MAC is an expensive operation for a microcontroller, Sancus
includes an optimisation scheme for subsequent authentications. When successfully
enabling isolation for a new SM as discussed above, the processor associates it with
a non-zero sequential smid that is exclusively managed by hardware. The hardware
implementation ensures that smids are not re-used before resetting the platform.
That is, smids uniquely identify an SM within one boot cycle. A programmer
can retrieve smids using the sancus_get_id instruction. This instruction takes an
address as an argument and returns the smid of the module loaded at that address, or
zero if no module is enabled at the provided address. The sancus_verify_address
instruction returns the smid of the verified module on successful MAC comparison.
The caller may store this smid to simplify subsequent authentications. It indeed

1Note that the initial Sancus architecture, as presented in [40], simply performed a platform
reset on a memory access violation. The explanation of the interrupt mechanism described here is
based on personal communication with Job Noorman.
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suffices to compare the stored smid with the result of the sancus_get_id instruction
to ensure that the callee module is still loaded at the expected address.

After successfully verifying SM2 as above, SM1 can pass any arguments for the
call through CPU registers to guarantee confidentiality and integrity of the data, as
explained in Sect. 2.2.2.

3.1.5 Caller Authentication

The above secure linking features provide a caller with guarantees about the state and
identity of the module that it is about to call. Sancus can also provide a callee with
similar guarantees about its caller.2 To so, Sancus offers the sancus_verify_caller
instruction that calculates a MAC of the identity of the calling module and compares
it with the expected MAC that is provided as an argument. The hardware logic
thereby defines the calling module as the previously executing module and provides
the sancus_get_caller_id instruction to retrieve its smid. Like the secure linking
instructions from the previous section, the caller authentication instructions are
inherently unforgeable as they are entirely implemented in hardware. Two SMs
can therefore efficiently establish a mutually authenticated communication channel
without trusting any software.

None of the PMAs discussed in Sect. 2.2.3 provides authentication features as
strong or efficient as those of Sancus. Strackx et al. [49] propose an approach
to set up a mutually authenticated communication channel without using explicit
caller authentication hardware instructions. As explained in Sect. 2.2.2 they use the
provided return continuation point to identify and verify the module where execution
will continue. Their approach thus guarantees information is returned to the correct
module, but cannot reliably identify the originator of the message. An attacker may
indeed provide an arbitrary return address if he is interested in effect only. The
initial Sancus architecture [40] as well as Trustlite [30] therefore employ a three way
handshake protocol to set up a true mutually authenticated communication channel
without hardware support for caller authentication. First, the calling module SM1
verifies the module SM2 it is about to call, using the techniques from the previous
section. Next, SM1 jumps to the physical entry point of SM2, passing (i) a secret
nonce, and (ii) the address of its own physical entry point as parameters. SM2 then
uses the techniques from the previous section to verify the module corresponding to
the provided address and on success calls back to SM1, passing the secret nonce as
an argument. SM1 finally responds to SM2 that it has indeed called SM2 with that
nonce. SM2 may now safely accept the call. Needless to say that, compared to the
simple sancus_verify_caller and sancus_get_caller_id instructions presented
above, such a three way handshake procedure imposes a serious overhead.

As explained further on, the work presented in this master’s thesis relies heavily
on Sancus’ efficient and reliable caller authentication mechanism.

2Sancus’ caller authentication features are recent work and therefore not discussed in [40]. The
explanation provided here is based on personal communication with Job Noorman.
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3.1.6 Remote Attestation

Sancus allows a remote software provider to (i) verify that its module has been
deployed correctly, and (ii) communicate securely with that module, preserving
confidentiality, integrity and authentication over an untrusted communication chan-
nel.3 The basis for these security guarantees lies in the fact that an SM that was
correctly loaded shares a secret cryptographic key with its software provider, as
explained in Sect. 3.1.2. Sancus thus offers two more instructions that operate on
the key of the currently executing module. The sancus_wrap instruction calculates
the MAC of a given message and encrypts its content, whereas the sancus_unwrap
instruction verifies the given MAC of a given message and decrypts its content on
success. Since Sancus enforces that a module can only indirectly access its own
key via dedicated hardware instructions, a software provider is guaranteed that the
message was produced by a specific module that is running uncompromised.

Table 3.1 summarises all the introduced hardware instructions and lists their
arguments and return values. The instructions that are marked in the “Crypto”
column are slower since they use cryptographic primitives, as explained above.

Table 3.1: Overview of Sancus’ extended instruction set

Instruction Crypto Arguments Return Value
sancus_enable X SM layout and SP identifier Success bool
sancus_disable - - -
sancus_verify_address X Address and expected MAC smid
sancus_verify_caller X Expected MAC smid
sancus_get_id - Address smid
sancus_get_caller_id - - smid
sancus_wrap X Memory pointers Success bool
sancus_unwrap X Memory pointers Success bool

3.1.7 Sancus Module Entry and Exit Protocol

A programmer can use the extended instruction set from Table 3.1 to securely write
his own SMs in assembly code. That is, all the above security guarantees (memory
isolation, secure linking, caller authentication and secure communication) can be
accomplished with a zero-software TCB. Sancus also comes with a dedicated C
compiler to allow the development of SMs in a higher level language on top of the
basic PMA hardware. The compiler reduces SM creation to simple annotation of the
C code with SM_ENTRY, SM_FUNC and SM_DATA attributes. This section explains how
the compiler takes care of low-level things to ensure that SMs represent an isolated
execution environment.

3Note that the initial Sancus architecture presented in [40] only ensured integrity and authen-
tication through a hardware-computed MAC of the passed data. The instructions presented in
this section also preserve confidentiality and represent recent work on Sancus. The explanation is
therefore based on personal communication with Job Noorman.
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As explained in Sect. 2.2.2, SMs should maintain their own private call stack
to ensure their internal execution cannot be influenced from the outside. When
switching protection domains, the compiler should make sure that (i) the private
call stacks are properly saved/restored, and (ii) all unused CPU registers are cleared
to avoid private data leakage. To this end, the compiler generates short assembly
code stubs that are executed whenever a module is entered or exited.4 These stubs,
referred to as respectively sm_entry and sm_exit, are inserted into the code section
of every SM. The following paragraphs elaborate on their responsibilities.

Entering a Module Recall from Sect. 3.1.3 that SMs have a single physical entry
point at the start of their code section. By inserting the sm_entry stub at the
physical entry point, the compiler can make sure that the stub is executed whenever
the SM is entered. This allows the sm_entry stub to restore the private call stack.
The compiler reserves protected memory for the call stack and allocates a fixed
location in the private data section to store the stack pointer. Since the private data
section is zeroed out on sancus_enable, the base address of the stack is stored at
a fixed location in the text section. This allows the sm_entry stub to initialise the
stack pointer after the module was successfully enabled.

The sm_entry stub can also be used to forward multiple logical entry points
through the single physical entry point. To do so, the Sancus compiler assigns a
logical eidx identifier to each function annotated with SM_ENTRY and generates a
private jump table for each SM. When calling a module, the eidx of the desired
logical entry point should be provided in an agreed register. The sm_entry stub
then simply indexes in its jump table with the provided eidx to retrieve the internal
function address. After calling an external function, a module can be re-entered by
supplying a special eidx value, analogous to the approach described in Sect. 2.2.2.

To successfully call an SM, one should jump to its physical entry point, providing
all arguments in agreed CPU registers. The sm_entry stub expects three kinds of
arguments. The first two – the eidx identifier and the address where execution
should be continued after calling this module – are supplied through fixed caller-saved
registers. Moreover, the sm_entry stub will forward any arguments intended for the
logical entry function, according to normal function calling conventions. The MSP430
architecture uses four 16 bit registers R15 to R12 for function arguments [52], which
limits the maximum amount of information to be securely passed for one function call
to 64 bits. One may encrypt additional data, store the cypher text in unprotected
memory and pass the encryption key securely through the CPU registers.

Exiting a Module The compiler also generates an sm_exit stub that will be
executed whenever a module calls an external function. This stub will first store
the internal execution context (program counter, values of CPU registers) on the

4Note that the Sancus paper [40] does not explain these stubs in great detail. They are relevant
however for the work on secure scheduling, presented in Chapter 5. The explanation provided
here is therefore partly based on the source code, which can be found at [39] (files sm_entry.s and
sm_exit.s in sancus-compiler/src/stubs/).
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private call stack. Next, it clears all unused CPU registers to avoid leaking of internal
private data (i.e. only registers that hold an argument value for the callee are not
cleared). The sm_exit stub thereafter stores the private call stack pointer in a fixed
location in the private data section, so that the sm_entry stub can restore the stack
on re-entry. Finally, the sm_exit stub calls the external module, according the
calling conventions explained in the previous paragraph.

When calling an external function the sm_exit stub passes the address of the
physical entry point of its own module as the return address argument. On re-entry,
as detected by the special eidx logical entry index, the sm_entry stub simply restores
the private call stack and continues internal execution.

3.2 Trustlite
This section briefly compares the Sancus [40] architecture presented above with
Trustlite [30], a similar hardware-level PMA for embedded devices.

3.2.1 Overview

Like Sancus, Trustlite is explicitly targeted at small embedded devices without
hardware support for virtual memory or processor privilege levels. Trustlite’s attacker
model is similar to that of Sancus too: attackers may control all unprotected code
and may deploy additional modules of their choice, but do not have physical access
to the node.

SMs are called trustlets in Trustlite and represent isolated execution environments
in the shared address space. Trustlets are provided with the typical PMA security
guarantees from Sect. 2.2.2 : they can only be entered from a few predefined entry
points and can be provided with exclusive access to their private data section.
Moreover, trustlets running on the same node can inspect each others state and set
up a mutually authenticated communication channel.

The Trustlite architecture also features a modified hardware exception engine. In
short, this secure exception engine stores the execution context of a trustlet on the
corresponding private call stack before jumping to the untrusted ISR. This ensures
that even in the presence of interrupts, a trustlet solely depends on hardware for
integrity and confidentiality of its internal state. Such a set-up allows an untrusted
preemptive scheduler to schedule trustlets in between normal unprotected tasks.
Section 5.1.2 discusses Trustlite’s task model in more detail.

3.2.2 Execution-Aware Memory Protection Unit

The main difference between Trustlite and Sancus is how they enforce the program
counter based memory access control rules. Recall from Sect. 3.1.3 that Sancus
employs a dedicated MAL hardware circuit per SM to enforce memory isolation.
Trustlite on the other hand features an Execution-Aware Memory Protection Unit
(EA-MPU). Such an EA-MPU allows to program access control rules in a dedicated
fixed-sized hardware table. An entry in this table looks as follows:
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(subject address range, object address range, r/w/x permissions)
The hardware logic verifies on every memory access whether the address being

accessed is part of an object range. If so, it uses the value of the current program
counter to identify the subject performing the memory access and its corresponding
access rights on the object. Recall that Sancus’ hardware logic provides the code
section of an SM with exclusive access to a single contiguous data section. Trustlite’s
EA-MPU table on the other hand can encode more complex policies. Think for
example about multiple non-contiguous private data sections per trustlet or protected
shared memory between trustlets. Such flexibility is however hard-limited by the
number of entries in the EA-MPU table, which is defined at hardware synthesisation
time.

Recall from Sect. 3.1.2 that Sancus supports a dynamic deployment model where
a remote software provider can load or unload SMs at run time without trusting
any software on the node. Trustlite on the contrary presupposes a static deployment
model where trusted software, referred to as the Secure Loader, loads and protects all
desired trustlets on system boot. More specifically, the Secure Loader is responsible
to (i) load all desired trustlets in memory, (ii) fill in the desired memory access
rules for trustlets in the EA-MPU table, and (iii) fill in a special rule that renders
the EA-MPU table read-only. From this moment on, the encoded access rules are
enforced by the EA-MPU hardware and the Secure Loader may safely transfer control
to the untrusted OS. The Secure Loader is obviously part of the TCB for trustlets,
since they have no way of reliably verifying whether their protection rules or code
section has changed during the loading process. Trustlets therefore rely on the
hardware for access control enforcement and on the Secure Loader to set up things
correctly. This explains why Trustlite, in contrast to Sancus, does not feature an
extended hardware instruction set, such as the one from Table 3.1.

A final aspect of Trustlite’s design concerns secure linking. Recall from Sect. 3.1.4
that Sancus uses hardware-managed keys and dedicated instructions to ensure strong
SM authentication guarantees. Trustlite on the contrary provides secure linking
through the read-only nature of the EA-MPU table as follows. First, the calling
trustlet looks up the callee in the EA-MPU table to verify it is indeed loaded at
the correct address with protection rules enabled. Next, the calling trustlet may
calculate a cryptographic hash of the code section of the callee to verify its integrity.
Note that verifying a hash of the callee does not exclude the Secure Loader from
the TCB since he may simply change the hash value stored in the calling trustlet’s
code section. Trustlets can set up a mutually authenticated communication channel
through a three way handshake protocol, as explained in Sect. 3.1.5.

3.2.3 Trusted Computing Base

Trustlite and Sancus share the same goal, i.e. providing lightweight hardware-
enforced protection domains in a single-address-space, but their approach differs
significantly in terms of flexibility and the induced TCB. Sancus realises strong
isolation and authentication guarantees with a zero-software TCB in a dynamic
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deployment environment, but offers limited flexibility. That is, the access control
policies for SMs are hard-wired in the combinational MAL circuits. Trustlite on
the other hand allows to encode more flexible access control policies in its EA-MPU
table, but relies on an omnipotent Secure Loader software entity for initialisation
and does not support a dynamic deployment model.

Trustlite’s EA-MPU rules are enforced by hardware, but initialised by a trusted
software layer. Trustlite’s Secure Loader therefore resembles a traditional OS (mi-
cro)kernel that is inevitably part of the TCB. In this respect, the initial Trustlite
architecture and static deployment model only depend on the Secure Loader at initial-
isation time. Koeberl et al. [30] however also mention the possibility of introducing
a software entity that (un)loads trustlets at run time, reconfiguring the EA-MPU
as needed. They acknowledge however that such an entity “must have a notion of
existing tasks and mediate IPC” and that “in this case the trust relationships are
similar to those of a microkernel OS” [30].

In contrast to Trustlite, the Sancus architecture enforces its security guarantees
without trusting any software running on the node. Its hardware-enforced protection
scheme indeed makes an omnipotent kernel layer, however small, inherently impossible.
This raises the question of what an OS for a Sancus-like hardware-only PMA should
look like. The next section therefore discusses the consequences of a zero-software
TCB on OS design.

3.3 Operating System Support for Protected Modules

The above discussion has revealed that PMAs are closely related to OS design. The
OS is traditionally regarded as a trusted resource manager that separates processes,
guards their interactions and implements some form of access control for shared
system resources (e.g. CPU time, memory, peripheral devices, etc.). PMAs that
isolate fine grained protection domains in a single-address-space therefore adopt some
of the responsibilities of a traditional OS. In this respect, the PMAs [48, 3, 36] from
Sect. 2.2.3 all employ program counter based access control as a way to complement
the existing coarse-grained virtual memory protection scheme enforced by the OS. A
lightweight hardware implementation of protected modules on the other hand can
provide a standalone substantive memory protection scheme for low-end embedded
devices. The Sancus [40] and Trustlite [30] architectures, introduced above, indeed
reorganise the unprotected single-address-space into a set of hardware-enforced
protected modules. Sancus thereby explicitly excludes the OS from the TCB and
Trustlite only relies on a Secure Loader software entity to set up things correctly.
Protected modules from both architectures thus exclusively rely on hardware to
enforce memory access control rules at run time.

Excluding the OS kernel from the TCB allows for strong security guarantees, but
also secludes modules in their own protection domain. The next sections therefore
explore the idea of securely providing OS-like services to protected modules, without
introducing an omnipotent kernel.
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3.3.1 Self-Protecting Operating System Modules

As already stated above, a hardware-level PMA secludes SMs in their own protection
domain. That is, an SM should either fulfil its own needs or rely on the services of
an untrusted OS to interact with the outside world. This implies poor trade-offs
between flexibility and protection. Consider for example an SM that wants to save
confidential data in a file system or read secret values from a sensor. Without
additional support, this SM would have to either claim the file system/sensor for
itself, effectively denying others access to the resource, or accept to use it in an
unprotected way. Both options are obviously undesirable in an embedded context
where system resources are scarce and SMs want to retain the confidentiality and
integrity of their data.

The key idea explored in this master’s thesis is to overcome the above flexibility
vs. protection trade-off by complementing the hardware-enforced security guarantees
for SMs with software-based resource access control guarantees. More specifically,
this thesis builds upon the existing Sancus primitives to provide a dedicated module
SMserver with exclusive access to a system resource and implements a thin software
layer on top to enforce flexible SM-grained access control policies. Sancus’ hardware
logic ensures that SMserver is solely responsible for the resource it encapsulates.
Sancus’ unique caller authentication mechanism, discussed in Sect. 3.1.5, furthermore
allows SMserver to reliably implement access control as desired. The SMserver

module is however in no way more privileged and cannot undo the hardware-enforced
security guarantees of its clients. This shows that even though SMserver performs a
typical OS task – i.e. shared resource management – it differs significantly from a
conventional omnipotent trusted kernel software layer.

Secure resource sharing for PMAs thus requires a disjoint set of self-protecting OS
modules. Every such module encapsulates and controls access to a platform resource
(e.g. a protected memory buffer, a file system, a keyboard, a network interface, etc.).
Client SMs can use Sancus’ strong authentication mechanism, discussed in Sect. 3.1.4,
to establish explicit trust relationships with the self-protecting OS modules of their
choice. This allows client SMs to extend their hardware-enforced security guarantees
with software-based availability and access control guarantees for shared system
resources.

3.3.2 Zero-Software Microkernel

The above idea of implementing the OS as a set of non-privileged modules echoes
the widely known microkernel approach [33, 34, 50]. Recall from Sect. 2.1.2 that a
microkernel architecture minimises the size of the trusted kernel software layer by
implementing most of the OS’s functionality as ordinary user space server processes.
Since processes are confined in their own virtual address space, a misbehaving OS
server cannot harm other applications running on the system. A microkernel design
therefore limits the TCB by reducing the kernel’s size.

There is no consensus on which mechanisms should be implemented in the
microkernel. In this respect, Liedtke [33] reasons about the minimal set of abstractions
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that a software microkernel should provide to allow the correct functioning of a
conventional virtual-memory-based computer system. He thereby defines correctness
as the ability to create arbitrary independent subsystems that can securely contact
each other. While Liedtke presupposes hardware support for virtual memory, these
abstract “subsystems” clearly resemble SMs. The Sancus platform could therefore
be regarded as a truly minimal zero-software microkernel that provides two basic
mechanisms to SMs: memory isolation and authentication. The question then
becomes whether such a zero-software microkernel is sufficient to securely implement
OS-like services on top. Liedtke [33, 34] identifies only three software primitives
for his minimalist second generation L4 microkernel: address spaces, threads and
IPC. The following briefly compares these microkernel abstractions to Sancus’
hardware-enforced mechanisms:

Address Spaces Liedtke argues that a microkernel has to “hide the hardware
concept of address spaces, since otherwise, implementing protection would be
impossible.” [33]. That is, a microkernel should maintain the mapping of virtual
to physical addresses for each process. Sancus on the other hand provides
fine-grained hardware-enforced protection domains in a single-address-space,
as explained in Sect. 3.1.3.

Threads Liedtke identifies a thread as “an activity executing inside an address
space” and states that “to prevent corruption of address spaces, all changes
to a thread’s address space [...] must be controlled by the kernel” [33]. He
furthermore mentions support for preemption as an additional reason to include
a threading concept in the kernel. The Sancus architecture on the other hand
does not need the concept of a classical thread to realise its security guarantees.
As explained in Sect. 3.1.5, Sancus’ hardware logic does however include a
notion of control flow by identifying the currently and previously executing
SM. The work presented in Chapter 5 shows that this is a sufficiently strong
mechanism to realise secure multithreading in a single-address-space, but also
identifies the need for a secure hardware interrupt engine in Sancus.

Inter Process Communication Liedtke identifies the need for a microkernel to
“establish a communication channel which can neither be corrupted nor eaves-
dropped” and states that “[unique identifiers] are required for reliable and
efficient local communication” [33]. This clearly resembles Sancus’ hardware-
supplied unique smids and secure linking features, discussed in Sect. 3.1.4.

The above comparison illustrates how Sancus’ hardware primitives resemble the
abstractions implemented by a minimal trusted microkernel. This seems to indicate
that Sancus provides sufficiently strong hardware building blocks to securely allow the
software implementation of OS-like services on top. Like in the microkernel analogy
and as mentioned above, this requires regarding the OS as a set of unprivileged
modules that realise policies not offered by the hardware. The key thing to note
here however is that Sancus realises its security guarantees without a trusted kernel
software layer.
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This master’s thesis focuses on providing secure resource sharing for a Sancus-
like hardware-level PMA. Chapter 4 presents a generic access control scheme and
implements a protected file system SMsfs module as a case study of realising SM-
grained logical file access restrictions. SMsfs offers security guarantees similar to
those of user space file system server which is effectively shielded from other protection
domains. Chapter 5 thereafter presents a multithreading model for hardware-level
PMAs and implements an accompanying unprivileged secure scheduler SMsched

module. The work presented in this master’s thesis therefore shows that SMs can
be provided with typical OS guarantees, without loosing their hardware-enforced
security guarantees.

3.4 Conclusion
A lightweight hardware-level PMA is promising in an embedded context, but also
secludes SMs in their respective protection domains. That is, hardware-enforced
PMAs offer strong memory isolation and authentication guarantees, but cannot
natively realise flexible access control policies for shared system resources. Without
additional support, the only way for an SM to get availability and/or confidentiality
and integrity guarantees for a system resource is to claim the resource for itself.
This implies poor flexibility vs. protection trade-offs, especially in an embedded
context where system resources are scarce and should be shared among multiple
inter-untrustworthy software entities. Think for example about an SM that denies
others access to a MMIO flash drive to protect its own confidential data or an SM
that monopolises CPU time to be guaranteed availability at all time.

It would thus be valuable to supplement the hardware-enforced security guarantees
for SMs with OS-like software-based access control policies for shared system resources.
As in the microkernel analogy, this requires implementing core OS concepts in
unprivileged modules that make use of the Sancus-provided primitives. The challenge
is to this without introducing an omnipotent kernel software layer that invalidates
the hardware-enforced security guarantees for SMs. The following two chapters
provide two case studies in this respect. Chapter 4 discusses a generic access control
model and implements a thin protected file system access control software layer
that provides logical file protection guarantees for client SMs. Chapter 5 presents a
threading model for hardware-level PMAs and implements an accompanying secure
scheduler that provides logical threads with CPU availability guarantees.
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Chapter 4

Logical File Access Control

This chapter presents a protected file system for the Sancus platform [40]. The file
system is encapsulated in its own SMsfs protection domain with exclusive access to
the storage device, ensuring file system integrity and confidentiality. Furthermore,
it realises SM-grained access control, allowing fine-grained access control policies
for logical file sharing between SMs. In a wider context, the prototype therefore
demonstrates the feasibility of encapsulating and controlling access to a shared system
resource through a lightweight trusted software layer on top of hardware-enforced
mechanisms.

The discussion is organised as follows. First, Sect. 4.1 motivates the need for a
secure embedded file system. Section 4.2 thereafter presents the protected file system
SMsfs implementation and Sect. 4.3 evaluates its runtime overhead. Section 4.4
discusses the security guarantees and limitations of the prototype and compares the
approach with other PMAs. Section 4.5 finally concludes.

4.1 Motivation

Supplementing the hardware-enforced security guarantees of SMs with logical file
access control guarantees is valuable for two major reasons. First, existing embedded
file systems commonly lack support for efficient file protection, as discussed in
Sect. 4.1.1. Second, providing SMs with the concept of a protected logical file has
many application areas, as introduced in Sect. 4.1.2.

4.1.1 Embedded File System Security

Existing embedded file systems [20, 19] focus mainly on performance aspects: flash
specific optimisations, RAM usage and energy consumption, whereas file protection
is non-existing or remains very limited. This is in line with the original concept
of a single static unprotected embedded application. Indeed, the design notes for
Matchbox, a file system for TinyOS, state literally: “We do not need: Security in any
form, [...]” [22]. As another example, Contiki features the Coffee file system [51], a
dedicated lightweight flash file system without any form of access control. LiteOS [6]
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provides its own LiteFS UNIX-like file system in which files may represent data,
binaries or devices. It also offers a coarse-grained user-oriented protection mechanism
that classifies all users in one of three levels, each with its own rwx mode bits.

In an embedded context, featuring a dynamic multi-stakeholder deployment model,
it is software modules rather than users that represent the unit of file protection.
Indeed, recall from Sect. 3.1.3 that an SM represents the unit of memory protection
and authentication. Extending these guarantees with SM-grained file access control
would thus be valuable. File protection on a per-SM-basis would furthermore be
interesting as it differs from conventional UNIX-like user-oriented file protection [4].
UNIX decides file access based on the identity of the owner of the currently executing
program. This coarse-grained scheme does however not shield a user from malicious
programs that run with her permissions [5]. Moreover, fine-grained file protection
is hindered by the default owner/group/others file attributes. Capability-based
process-specific file protection for UNIX has been proposed [5] as a countermeasure
and fine-grained access control can be accomplished with access control lists [23].

4.1.2 Application Scenarios

The problem domain of low-end embedded devices is characterised by conflicting
interests between economic considerations on the one hand and security requirements
on the other. PMAs present the SM as the unit of lightweight memory isolation and
authentication. The protected SMsfs file system module introduced in this chapter
shows the feasibility of securely sharing system resources on a per-SM-basis. More
specifically the file system can control access to (i) a private memory buffer, allowing
a form of protected shared memory between SMs, and (ii) a peripheral flash drive,
allowing protected bulk storage in a real-world embedded file system. The following
briefly discusses application scenarios for both possibilities.

Protected Shared Memory

Being able to pass a moderate sized buffer securely between protection domains,
could be useful in many contexts. A first scenario concerns parameter passing of
large values. Indeed, recall from 3.1.7 that one can only provide parameters securely
through a limited number of CPU registers when calling an SM. The only way
to pass large values securely between SMs is therefore to either (i) encrypt the
data in unprotected memory and pass a pointer to it, or (ii) call the destination
module multiple times, each time passing part of the data securely through registers.
The SMsfs module can facilitate this second process by acting as a trusted third
party that temporarily stores all transited data in its own private section and allows
fine-grained access rights for the recipients.

Protected shared memory may also be useful in the context of secure I/O. Recall
from Sect. 3.1.3 that an SM can indeed be provided with exclusive access to a MMIO
peripheral. Think about such a keyboard driver module SMkeyboard, offering an
entry function to get an input line confidentially from the user. SMkeyboard may
simply use SMsfs’s protected shared memory service to store the potentially large
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result and to define according access rights for the client that requested the data. In
this context, it is useful to think about more complicated scenarios where multiple
SMs work on a common shared memory buffer. Consider for example a client SMA

requesting an input line from a user input framework SMinput. This module in turn
uses SMkeyboard to get the actual input line through shared memory, potentially
makes some changes (e.g. auto completion, expansion, etc.) and finally returns the
result to SMA. Furthermore, these modules could have different access rights to
the shared buffer: e.g. write for SMkeyboard, read/append_only for SMinput and
read/destroy for SMA.

Secondary Storage

Several authors [20, 19, 51] identify an emerging application area for embedded
platforms using secondary storage file systems. As explained in Sect. 4.1.1 support
for logical file protection in existing embedded file systems remains very limited. In a
multi-stakeholder model with software extensibility by multiple untrustworthy vendors
however, fine-grained access control for secondary storage resources is essential.
Consider for example a low-end extensible wearable device. One application could
save sensitive medical logs in the file system; another one could simultaneously
use the file system to save privacy-sensitive data such as environment sensor data,
recordings, GPS locations, etc. Needless to say reliable and fine-grained memory
protection and file access control is imperative in such a system.

4.2 Design and Implementation of a Protected File
System

This section presents a generic access control mechanism and accompanying protected
file system implementation for the Sancus platform [40]. The file system is encap-
sulated in its own SMsfs protection domain with exclusive access to the back-end
device, which can be either a protected memory buffer or a real-world embedded
flash file system. It features a thin access control software layer that allows secure
logical file sharing between SMs. The protected file system therefore serves as a case
study of secure resource sharing in a PMA environment.

The explanation is organised as follows. Section 4.2.1 shortly reviews an initial
inode-based file system prototype. Thereafter, Sect. 4.2.2 explains how the current
SMsfs module is internally structured into a generic front-end that controls access to
a pluggable private back-end software layer. Section 4.2.3 introduces the front-end’s
implementation and Sects. 4.2.4 and 4.2.5 discuss the respective back-ends.

4.2.1 Initial Inode-based File System Prototype

Initially, an elementary inode-based file system prototype was implemented from
scratch to explore the feasibility of encapsulating it entirely in its own protection
domain. Analogous to a conventional UNIX structure [4, 50], this file system stores
logical file meta data – size and permissions – in the on-disk inode table. To do
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so, the implementation features a custom inode layout that includes a fixed-sized
Access Control List (ACL) to store the permissions. By storing access control
meta data in the on-disk inode table, this prototype anticipates SM-grained file
protection that persists across system reboots. As further discussed in Sect. 4.4.3, such
persistent protection guarantees are however non-trivial and require i.a. persistent
SM authentication, which is not available on the current Sancus hardware.

This primitive file system demonstrates the feasibility of SM-grained logical file
protection, but its internal structure – lacking advanced caching or flash-specific
optimisations – is too limiting in the context of real-world embedded applications.
The next sections therefore discuss an approach that separates the non-persistent
access control logic from the actual file system implementation to allow logical file
protection guarantees for a real-world embedded flash file system.

4.2.2 Layered Design

The protected file system depicted in Fig. 4.1 features a layered design with a
front-end access control layer deciding access to a private back-end software layer,
encapsulating the actual resource. From the point of view of the front-end, the
back-end is an abstract Contiki File System (CFS) interface [16] implementation
that can be plugged in when compiling the SMsfs module. This chapter provides
two different back-end implementations. Section 4.2.4 discusses an implementation
that operates on a Sancus-protected memory buffer, allowing a form of protected
shared memory between SMs. Section 4.2.5 plugs in a real-world embedded flash file
system, realising SM-grained protection for a shared system resource.

Front-End Access Control Layer

Protected file system SMsfs boundary

MMIO Serial Flash
Drive

CFS API

Flash Storage
Back-End

Shared Memory
Back-End

CFS API

SMA SMB

SFS API

System boundary

OR

Figure 4.1: The protected file system SMsfs module consists of a generic public
front-end access control layer controlling access to a pluggable private back-end

software layer, encapsulating the actual resource.

From a security perspective, the front- and back-ends are merely a logical structure
since the entire file system runs in a single protection domain SMsfs. The front-end
offers the public interface (i.e. SMsfs’s entry points) towards clients, whereas the
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back-end is called through private non-entry functions. Since the PMA hardware
guarantees a protection domain can only be entered from its predefined entry points,
a client is effectively prohibited from bypassing the access-control front-end and
calling the back-end directly.

The division of responsibilities between the front- and back-end is as follows. The
front-end presents a transparent UNIX like file system interface towards client SMs
to provide them with the concept of a contiguous logical file with offset-addressable
content. Internally however, the front-end is only concerned with SM-oriented access
control policies and maintains the data structures to do so. It relies on the back-end
CFS implementation for the concept of a logical file. The back-end in its turn
encapsulates the actual file system implementation and is completely unaware of any
access control going on. It is important to note here that the front-end has no notion
of persistence and stores all its access control data structures in volatile protected
memory. As further discussed in Sect. 4.4.3, the SMsfs prototype does not support
persistent SM-grained file protection since it uses Sancus’ hardware-provided smids
that do not last over multiple boot cycles [40].

4.2.3 Generic Front-End Access Control Layer

The front-end is conceived as a wrapper implementation that associates an ACL of
(smid, permissions_flag) pairs per logical file to validate the caller’s permissions
before passing the call to the back-end.

Software-Module-Grained Access Control

Recall from Sect. 3.1.5 that the smids, uniquely identifying a Sancus module within
one boot cycle, are inherently unforgeable as they are exclusively managed by
hardware. They can therefore safely be used for subsequent client authentications in
a software layer. Essentially, the front-end accomplishes its access control guarantees
through the sancus_get_caller_id hardware instruction, which it uses to reliably
retrieve the smid of the client – i.e. the SM that entered the currently executing
module.

The protected file system prototype SMsfs builds upon Sancus’ hardware-enforced
security guarantees in two ways. On the one hand, Sancus’ memory isolation
techniques grant SMsfs exclusive access to its back-end resource. On the other hand,
Sancus’ SM identification scheme provides SMsfs with a reliable client authentication
mechanism that allows implementing a thin software layer to realise flexible access
control policies for its private back-end resource.

Interface

The Sancus File System (SFS) interface is based upon the UNIX-like Contiki File
System (CFS) interface [16, 51], modified where needed and extended with SM-
specific access control functions. More specifically, the cfs_read and cfs_write
functions that require a pointer to an unprotected memory buffer and a length
argument, are replaced with sfs_getc and sfs_putc functions, which pass the
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arguments and return values securely through CPU registers. For the same reason
file name strings are replaced with single chars.

In addition, the SFS interface supports SM-grained access control. Using the
sfs_chmod function, the module that first created a file can assign or revoke fine-
grained permissions for a specific SM via a bit flag. Currently the prototype supports
read-only, write-only and read-write permissions, but due to the generic access control
scheme, more advanced policies such as append-only could be added relatively easy.
Client SMs open files through a modified sfs_open function, requiring a permissions
flag argument and an initial size hint which is passed to the back-end.

Data Structures

The SMsfs prototype stores all access control data structures in its protected private
data section. It maintains a linked list for logical files, each with a corresponding
SM-grained permission ACL. This allows a two phase permission lookup procedure
when specifying a file by name. The file list is first traversed to locate the file, using
the name as a key. Thereafter, the corresponding ACL is searched using the calling
SM’s smid as a key. To speed up future accesses using a file descriptor, SMsfs

employs a fixed-sized file-descriptor-indexed array with pointers to the corresponding
ACL entry.

On each function call, before translating the call to the CFS back-end, the
front-end validates the caller’s permissions. If the caller passes a file descriptor,
the implementation first checks whether it is in the expected range and points to
an ACL entry that belongs to the caller. Furthermore, to allow safe revocation of
earlier assigned permissions, SMsfs closes any remaining open file descriptors when
revoking a permission – as opposed to the POSIX standard [26] which leaves such
behaviour implementation-defined.

As explained in Sect. 3.1.3, Sancus’ hardware logic requires the protected memory
section of a module to be fixed-sized during its lifetime. The SMsfs implementa-
tion should fulfil its own dynamic protected memory requirements. To do so, the
implementation enforces a maximum number of open file descriptors, pre-allocates a
fixed number of file and permission structs at compile time and maintains them in a
free list at run time. When running out of protected memory, the front-end rejects
requests to create additional files.1

4.2.4 Protected Shared Memory Back-End

In the protected shared memory implementation, the back-end operates on a fixed-
sized Sancus-protected memory buffer. Internally, SMsfs uses a dynamic memory
allocation malloc implementation on this buffer, allowing clients to transparently
claim a portion of it through a familiar UNIX-like file system API.

1Note this allows denial-of-service attacks, where an attacker deploys an SM that creates the
maximum number of files. This could be mitigated in turn by enforcing more complex policies, such
as limiting the maximum number of open files per SM. Availability is discussed in more detail in
Sect. 4.4.2.
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Logical files in the protected shared memory back-end have a fixed size during
their lifetime. When creating a new file, the implementation uses the initial size
argument to allocate a buffer of the corresponding size. From then on, it does proper
bounds checking, refusing to seek beyond the buffer’s end.

Files are arranged in a linked list, each i.a. containing a pointer to a location
inside the private malloc buffer and the corresponding size. Furthermore, as in
the front-end, the prototype maintains a file-descriptor-indexed array to speed up
common file operations and to save the current client-specific logical offset in the file.
Of course this bookkeeping information should also reside in protected memory. To
support a dynamic number of logical files, the implementation allocates the required
structs using its own protected malloc buffer.

4.2.5 Protected Shared Flash Storage Back-End

The case study flash file system back-end is Contiki’s open source Coffee FS [51].
The reasons for this choice are that the Coffee file system is (i) highly optimised for
small flash memories, (ii) requires a small and constant RAM footprint per open file,
and (iii) does not provide any existing file protection mechanism.

The shared flash storage back-end introduces the important issue of secure
peripherals [30]. Indeed, SMsfs should be provided with exclusive access to the flash
drive to ensure file system integrity and confidentiality. For peripherals that are
being accessed through the memory address space, Sancus’ program counter based
memory access control scheme grants a dedicated driver SM exclusive access to a
resource by including the relevant MMIO addresses in its private data section [40].
The driver module then securely links with SMsfs, using mutual authentication as
discussed in Sects. 3.1.4 and 3.1.5, to realise end-to-end file system protection.

4.3 Experimental Evaluation

This section evaluates the protected file system SMsfs prototype introduced above.
It discusses runtime overhead as well as the induced memory footprint and code size.
Total runtime overhead is defined from a client SM’s perspective as the additional
number of CPU cycles needed to call an SMsfs entry function, compared to calling
the respective function of an unprotected file system. Sections 4.3.1 and 4.3.2 split
the overall overhead into a Sancus-dictated component, induced by switching Sancus
protection domains, and an implementation-dependent component caused by the
access control layer. Finally, Sects. 4.3.3 and 4.3.4 provide the relative overhead for
the protected shared memory and Coffee flash file system back-ends.

All experiments were conducted on a Sancus-enabled MSP430 FPGA running at
20 MHz. The FPGA is connected to a Micron M25P16 serial flash drive, using the
Coffee file system from Contiki release 2.7.
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4.3.1 Sancus Protection Domain Switching

As explained in Sect. 3.1.7, the Sancus compiler automatically inserts sm_entry and
sm_exit code stubs that take care of private call-stack switching and clearing of
CPU registers to avoid leaking of confidential data. These code stubs thus induce an
extra overhead for function calls that switch protection domains. The exact number
of cycles needed for such a function call varies with the number and size of the
arguments and return value. Calling an unprotected function from within a module
SMA takes between 120 and 170 cycles, whereas calling an SMB entry function from
within SMA requires between 210 and 280 cycles. The latter interaction consumes
more cycles since SMB’s sm_entry stub additionally has to (i) store all callee-save
general purpose CPU registers, (ii) call the internal logical entry point, (iii) restore
all callee-save general purpose CPU registers, and (iv) clear registers that do not
hold a return value.

The above results indicate an additional Sancus-dictated overhead of roughly 100
cycles for client SMs calling our protected SMsfs module, as opposed to calling an
unprotected file system. Note that this overhead is solely caused by encapsulating
the file system in its own protection domain SMsfs, independent from any additional
access control logic.

4.3.2 Access Control Overhead

This section provides micro benchmarks of the access control front-end layer. The
last column of Table 4.1 shows the total number of CPU cycles needed for a protected
client SMA to call the protected file system SMsfs configured with a dummy back-
end that simply returns to the front-end. The “Sancus Induced” column lists the
number of cycles thereof caused by calling the respective Sancus entry function,
depending on the number of arguments. These numbers are clearly responsible
for the vast majority of cycles, illustrating how SMsfs realises SM-grained access
control policies through a thin software layer on top of Sancus’ hardware-enforced
mechanisms.

To further detail the overhead induced by the front-end, the “back-end call”
column of Table 4.1 lists the number of cycles needed by the front-end to call the
back-end – the downside of a layered design. The “ACL checks” column shows the
number of cycles needed to traverse the access control data structures, in the case
of a single file and ACL entry. The impact of the file descriptor cache is clearly
visible, resulting in a constant and low access control overhead for the functions
seek, getc, putc and close. As explained in Sect. 4.2.3, the prototype uses linked
lists, resulting in a linear growing access control overhead for functions without a file
descriptor. As experimentally verified, the worst-case overhead indeed grows linearly
with a reasonable factor of about 12 extra cycles per additional logical file or ACL
linked list entry.

The memory overhead of the SMsfs prototype is bounded at compile time by
pre-allocating the file descriptor array and a maximum number of structs for logical
files and ACL entries. This is common practice in embedded file systems – as
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Table 4.1: The number of cycles needed for SMsfs configured with a dummy
back-end, assuming a single open file with one ACL entry. The “Sancus Induced”
column lists the number of cycles needed to call the respective SMsfs entry function.
The next two columns show the overhead of the front-end and the last column lists

the summation.

SFS API Sancus Front-End Induced Total
function case Induced ACL checks back-end call

format 211 181 17 409
open creat 279 120 69 468
open exist 259 95 69 423
seek 259 18 58 335
getc 229 46 59 334
putc 234 55 63 352
close 229 56 24 309
remove 226 138 27 391
chmod add 247 120 0 367
chmod revoke 247 158 0 405

illustrated by the Coffee back-end – and is needed to overcome Sancus’ fixed-sized
private data section, as explained in Sect. 4.2.3. Both structs occupy 6 bytes. In
the test set-up, the SMsfs module was configured with a maximum number of 10
ACL entries, 5 files and 8 file descriptor entries, resulting in a total memory usage of
106 bytes. In terms of code size, the access control layer of SMsfs occupies 1.9 KB,
whereas the Coffee back-end requires 5.3 KB. The front-end access control layer thus
increases the code size with a factor of 0.36.

4.3.3 Protected Shared Memory Back-End

To investigate the runtime overhead of the protected file system module SMsfs

configured with a shared memory back-end, this section compares it to the case
where two SMs communicate via an unprotected dynamically allocated shared
memory buffer in the single-address-space. The “shm” column of Table 4.2 thus
shows the baseline, i.e. the number of cycles needed to create a shared buffer of
size 100 via an unprotected malloc call, read / write a character and free it. The
next two columns list the number of cycles needed for the protected shared memory
SMsfs module and the absolute overhead.

The key thing to note here is that, once the unprotected dynamic memory is
allocated, read and write accesses are equivalent to normal memory accesses and thus
require very few cycles. The SMsfs protected shared memory set-up however adds a
level of indirection, implying a huge relative overhead for memory accesses. Moreover,
setting up the memory buffer takes longer as the meta data structures should be
initialised and clients have to open the logical file before accessing it. Emulating
flexible access control policies on top of Sancus’ native protection model is however
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for the moment the only way of realising complex protected interactions between
SMs.

Table 4.2: The overhead for a client SMA that uses SMsfs’s services for each back-
end, assuming a single open file with one ACL entry. The “Shared Memory” columns
list from left to right: the number of cycles needed by SMA to use unprotected
dynamic memory, SMsfs with a shared memory back-end and the absolute overhead.
The “Flash Storage Back-End” columns list from left to right, the number of cycles
needed for SMA to call: an unprotected Coffee file system, SMsfs with a Coffee
back-end; the absolute and relative overhead and the overhead percentage induced

by the ACL lookup.

API Shared Memory Flash Storage Back-End
baseline overhead baseline overhead

function case shm sfs-shm shm-abs coffee sfs-coffee abs rel acl

format - 584 584 360e6 360e6 286 0 63
open creat 192 1,326 1,134 76,133 76,436 303 0 40
open exist - 706 706 2,604 2,862 258 10 37
seek - 322 322 430 594 181 44 10
getc 2 342 340 902 1,081 179 20 26
putc 4 351 347 1,288 1,485 197 15 28
close - 539 539 317 498 181 57 31
remove 192 670 478 8,033 8,293 260 3 53
chmod add - 367 367 - 367 367 - 33
chmod revoke - 405 405 - 405 405 - 39

4.3.4 Protected Shared Flash Storage Overhead

This section investigates the runtime overhead of the protected SMsfs file system
prototype on top of Contiki’s Coffee FS [51], a typical real-world embedded flash file
system. The “coffee” column of Table 4.2 lists the baseline, i.e. the total number of
CPU cycles needed for a protected client SMA to call an unprotected Coffee flash
file system. The “sfs-coffee” column shows the number of cycles needed by SMA

to call the SMsfs protected file system module, configured with a Coffee back-end.
Note that these numbers reflect the ideal case where the front-end as well as the
back-end implementation and flash driver share the same protection domain SMsfs.
In the test set-up the Coffee file system and the flash driver operate in unprotected
mode, see also Sect. 4.4.3. The presented data is therefore extrapolated by carefully
subtracting the fine-grained overhead of switching Sancus protection domains.

The “abs” column of Table 4.2 lists the absolute number of overhead cycles caused
by the protected file system implementation, as compared to the unprotected Coffee
set-up. To make sense out of these numbers, the next columns provide the relative
overhead and the percentage of the total overhead that is caused by the access control
front-end implementation. These results indicate that the overhead of protected
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resource sharing on top of a real-world flash file system is reasonable. Indeed, due to
the delay of the flash I/O and the file descriptor cache described above, the relative
number of additional cycles remains limited for commonly used file operations, under
20% for getc and putc, and even drops to zero for file system heavy operations
such as format, creat and remove. Moreover, the additional SM-specific chmod
access control function consumes a number of cycles of the same magnitude as the
unprotected in-memory file operations, such as seek. Finally, the front-end access
control software layer shows to be lightweight in the sense that over half of SMsfs’s
overhead – in the case of a single file and ACL entry – can be attributed to calling
the respective Sancus entry function and the back-end function call.

Comparing the two case study back-end reveals another characteristic of SM
interactions: the relative overhead of switching protection domains from a calling
module, decreases with the amount of work done in the callee module. Indeed,
the overhead of SMsfs with a flash back-end is lightened by the flash I/O delay,
whereas the overhead in the protected shared memory case is aggravated by the fast
unprotected memory access.

4.4 Discussion
This section discusses the security/availability guarantees and limitations of the
protected file system. The prototype is also regarded in a broader perspective by
discussing the possibility of porting the access control approach to other PMAs or
controlling access to other peripherals.

4.4.1 Security Guarantees

The SMsfs module builds upon Sancus’ existing hardware primitives to supplement
the hardware-enforced security guarantees of its clients with logical file access restric-
tions. Clients using SMsfs naturally incorporate it in their TCB. This approach
differs significantly from a traditional trusted OS computing base however for two
major reasons.

First, only client SMs using SMsfs should trust it and Sancus offers a strong
authentication mechanism to verify SMsfs. Recall from Sect. 3.1.5 that a client can
indeed attest SMsfs has not been tampered with and was loaded correctly, with
exclusive access to the MMIO flash drive addresses. This results in a minimal explicit
TCB, as opposed to the implicit TCB induced by an omnipotent kernel trusted
software layer.

Second, the SMsfs module is solely entrusted its dedicated file system task,
echoing the well-known principle of least privilege [44]. A faulty SMsfs module
can indeed only tamper with or leak the file system data it is entrusted. A client
SM still preserves exclusive access to its private section. In this, SMsfs’s security
guarantees are similar to those of a microkernel file system running in user space
as it is effectively shielded from other protection domains. The key thing to note
here, is that Sancus does not rely on any trusted kernel software layer to enforce this
separation, as discussed in Sect. 3.3.2.
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4.4.2 Availability Guarantees

Encapsulating a file system in its own protection domain is not only valuable from a
security perspective, but can also offer additional availability guarantees. Clients
can encrypt and sign data themselves before storing it in an unprotected file system
to be guaranteed confidentiality and integrity, but such an approach still does not
guarantee availability. Indeed, nothing stops an attacker from overwriting data in the
unprotected file system or from claiming the relevant MMIO regions to deny others
access to the flash drive. The SMsfs module on the other hand guards the access to
the flash drive and can therefore enforce availability requirements as desired.

In this respect, Masti et al. [35] propose a combination of hardware and software
components to control access to an embedded peripheral bus. They ensure availability
for a multi-master I2C bus in three ways: (i) only peripherals required by the currently
executing application are allowed access to the bus, (ii) the currently executing
application can only access the peripherals which it is allowed to access, and (iii) the
length of any bus transaction is bounded. Their approach therefore protects against
misbehaving applications that access unnecessary peripherals, as well as against
misbehaving peripherals that do not adhere to the bus protocol. In short, Masti et
al. rely on a trusted software layer to initialise the access rights and a dedicated
hardware bus manager to enforce peripheral access control.

The Sancus MSP430 prototype uses a single-master SPI peripheral bus that
is controlled through MMIO addresses.2 The generic access control mechanism
presented in this chapter could therefore be used to realise access control and
availability guarantees for the SPI bus. To do so, a dedicated SMbus should claim
the relevant MMIO addresses in its private data section and implement an access
control software layer on top, so that it mediated access to the SPI bus. Instead of
file names, clients should supply a logical device identifier and SMbus maintains an
ACL of (smid, permissions_flag) per logical device. If access is allowed, SMbus

toggles the appropriate Slave Select line of the SPI bus to start the data transfer.
Analogous to the approach of Masti et al. [35], such an SMbus module ensures that
clients can only access the peripherals they are allowed to. In contrast to Masti et
al. however, SMbus’s software layer cannot prevent misbehaving SPI peripherals
from denying the availability of the bus by not adhering to the bus protocol. Such
guarantees would indeed require hardware modifications to the SPI bus.

The next chapter shows how combining the above access control guarantees for
shared system resources with a secure scheduling model results in strong availability
guarantees for SMs, without loosing their hardware-enforced protection guarantees.

4.4.3 Limitations

This section acknowledges several limitations of the SMsfs prototype. First, the
limitations of the test set-up are discussed, thereafter the more fundamental issue of
persistence and possible solutions.

2 The technical details presented in this paragraph result from personal communication with
Job Noorman.
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Limitations of the Set-Up

A first limitation of the test set-up is that the Coffee case study back-end file system
runs in unprotected mode. This should be no fundamental issue, since protecting the
Coffee implementation should be feasible, as demonstrated by the initial inode-based
elementary protected file system prototype of Sect. 4.2.1.

A second limitation concerns the protected flash driver. As explained in Sect. 3.1.3,
Sancus’ current program counter based MAL hardware circuits only allow a single
contiguous private data section per SM. This implies that a module including a
MMIO address range in its private data section, cannot at the same time store
protected data. To realise end-to-end file system protection, one therefore needs a
separate dedicated flash driver SM, exclusively communicating with SMsfs. From a
security perspective, there is no real issue here, but switching protection domains
decreases the performance, as explained in Sect. 4.3.1. In a real-world set-up however,
Sancus’ combinational MAL circuits [40] that realise program counter based memory
access could relatively easy be extended. The hardware logic could for example allow
a single SM protection domain to consist of a contiguous protected address range
to save private data and call stack, as well as a MMIO address range for exclusive
access to a peripheral. While such an extension would increase the hardware costs
by introducing additional registers and comparators per MAL circuit, it would also
increase the overall flexibility of the system.

Limitations of the Non Persistent Approach

The SMsfs prototype ensures confidentiality and integrity of logical files as long
as it is up and running (which can be verified by the client), but does not persist
these guarantees across reboots. Indeed, Sect. 3.1.5 explained the smids assigned to
SMs by Sancus increase monotonically during a boot cycle. The assigned smid may
therefore change when redeploying the same SM after rebooting the system. One
could furthermore argue that extending SMsfs’s file protection guarantees across
reboots is non-trivial, as anything could happen between crashing of the node and
successful redeployment of SMsfs. In this respect, the protected file system does
also not protect against physically removing and reading out the flash drive. This
matches Sancus’ attacker model, introduced in Sect. 3.1.1, which does not consider
attackers with physical access to the hardware.

The existing non-persistent SMsfs prototype should be considered as a way
for SMs to extend their fixed sized private data section considerably, while at the
same time offering flexible access control guarantees. In this respect, it could be
an interesting future work direction to ensure the hardware automatically clears
the flash drive on system boot – even before SMsfs is deployed – to enforce the
non-persistence of file system data.

The following briefly discusses several strategies to support persistence file pro-
tection and their downsides, which may or may not be problematic depending on
the application scenarios and the desired security guarantees.
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Trusted Loader A straightforward, yet undesirable solution would be to intro-
duce a trusted SMinit module that “magically” initialises access control rules at
boot time, after loading the SMsfs module. Such a solution would reflect a static
deployment scenario where the same SMs are always deployed on the same node and
access the same files. To initialise file permissions, SMinit may proceed as follows.
First, it loads all desired SMs and retrieves their smids using the sancus_get_id
instruction. Thereafter, it loads the SMsfs module and uses a special entry point
to provide initial file permissions for the smids. The SMsfs entry point should use
the sancus_verify_caller instruction to make sure it has been called by SMinit.
From then on, SMsfs operates as usual and decides access using its internal file
permission table.

From a security perspective the solution sketched above is clearly inferior, since
it introduces a kernel-like trusted software layer. All clients SMs should indeed
incorporate SMinit in their TCB for file protection. In this, the solution resembles
Trustlite’s Secure Loader [30] software entity, introduced in Sect. 3.2. In contrast
to Trustlite, SMs still do not need to trust SMinit’s load process for their Sancus-
provided security guarantees, as discussed in Sect. 3.1.3. SMinit’s load process
becomes trusted however for their additional file protection guarantees, which is
undesirable. Moreover, this solution neglects the possibility that an attacker may
have tampered with the file system before SMsfs has been re-enabled.

Long-Term SM Identity To exclude a kernel-like software entity from the TCB
for file protection, SMsfs should find another way of reliably authenticating modules
over their lifetimes. Recall from Sect. 3.1.2 that the identity of an SM is based on
(i) the content of its code section, and (ii) its layout (i.e. the load addresses of its
code and data section). Using a hash of the code section alone is not a reliable
option, since an attacker may deploy its own SM with exactly the same code section
– which may or may not be problematic. Identifying a module through a hash of its
layout plus code section allows different instantiations of the same module, but still
does not protect against an attacker that deploys its own module at the address of
his choice after rebooting the system.

The protected file system needs help from a persistent trusted third party to
reliably identify a module across system reboots. The client SM’s software provider
could act as such a trusted third party. Section 3.1.6 indeed explained how Sancus
can provide a confidential communication channel between an SM and its remote
software provider. This channel could be used to safely transfer a key/capability to
the client module. SMsfs would then decide access based on this long-term capability,
rather than the module’s smid. To speed up subsequent accesses, the smid could of
course be cached once the initial authentication through the capability is over.

The solution sketched above however still does not protect against an attacker
that may have tampered with the file system before SMsfs has been re-enabled.

File System Encryption The only way to protect against an attacker with access
to the file system before SMsfs has been re-enabled, would be to encrypt all data
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on the flash disk with SMsfs’s module-specific key. Encryption/decryption with
this key is possible from within SMsfs’s code section through the sancus_wrap and
sancus_unwrap instructions, as discussed in Sect. 3.1.6. As evident from Eq. (3.3),
SMsfs’s hardware-generated key can be kept unchanged across system reboots by
simply redeploying SMsfs at the exact same load addresses.

Encrypting all data on the flash disk would however dramatically reduce per-
formance, especially since all data is transferred safely through CPU registers on
a byte-per-byte basis. To avoid encrypting every byte separately, SMsfs would
have to introduce caching in its private data section. This would transform the
lightweight trusted access control software layer into a fully fledged file system of
its own. Moreover, there would be little advantage over the situation where clients
encrypt the data themselves before passing it to SMsfs or even an unprotected file
system.

4.4.4 Comparison with Other PMAs

While the protected file system prototype is implemented for the Sancus platform [40],
the approach of its access control front-end is quite generic. That is, in a broader
perspective the access control mechanism introduced in this chapter demonstrates the
feasibility of supplementing the security properties offered by PMAs with SM-grained
access control guarantees enforced by a protected software TCB. This section briefly
discusses how SMsfs’s approach can be ported to other PMAs. When doing so, it
is important to distinguish between the protected shared memory use case and the
protected shared flash storage use case.

Protected Shared Memory

The protected shared memory use case can be considered as an example of emulating
flexible policies on top of Sancus’ constrained hardware mechanisms. Indeed, as
explained in Sect. 3.1.3, Sancus does not natively support complex policies such as
dynamically allocating or sharing of protected memory. The Trustlite architecture [30],
introduced in Sect. 3.2, does however provide a more flexible hardware mechanism
through a configurable EA-MPU table. Trustlite natively supports protected shared
memory between protection domains, but each shared memory region should be set
up by the Secure Loader at boot time and requires one EA-MPU table entry per
module that should be allowed access. Trustlite’s flexibility is therefore limited by the
number of entries in the EA-MPU table, which is defined at hardware synthesisation
time.

Sancus’ existing hardware protection model could also be extended to natively
support some form of protected shared memory. The Fides [48] PMA for example
provides a shared memory segment that belongs to the currently executing module.
This allows a module to write data to the shared memory zone before transferring
control to the next one, which automatically becomes the receiver of the data.
While Fides relies on a trusted hypervisor to enforce memory access rights, such a
shared memory zone could also be enforced in hardware, analogous to the existing
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combinational MAL circuits that define SMs. While such a solution would drastically
simplify basic sharing – and therefore also the performance of SMsfs as discussed in
Sect. 4.3.1 – it also illustrates some of the caveats of implementing more advanced
policies in hardware. To start with, this solution still does not natively support
complex forms of sharing between SMs. Think for example about sharing between
three or more SMs, longer-duration sharing, etc. Moreover, in order to retain
confidentiality and integrity, writing out the shared data and calling the next SM
should happen in a single atomic operation. Realising such a guarantee can be
non-trivial in a preemptive multithreading environment.

Protected Shared Flash Storage

The flash storage use case illustrates the more general case of controlling access to
a shared system resource. In principle, SMsfs’s generic front-end could be used to
control access to any system resource that can be accessed through the memory
address space – and thus encapsulated in its own protection domain. In this, the flash
storage use case illustrates how SMs can supplement their PMA-provided security
guarantees with access control guarantees for a shared system resource through a
minimal and explicit software TCB. This chapter has identified the minimal set
of mechanisms that should be provided by a PMA to support such secure resource
sharing. They are (i) memory isolation, (ii) efficient caller authentication, and
(iii) exclusive use of MMIO ranges.

The Trustlite [30] architecture, introduced in Sect. 3.2, provides all the re-
quired mechanisms. The secure resource sharing approach proposed in this chapter
could therefore be ported relatively easy to this architecture. There is one caveat
however: protected modules in Trustlite can only establish a mutually authenti-
cated channel through a three way handshake protocol, as described in Sect. 3.1.5.
In short, this implies that an SMsfs module running on Trustlite cannot use a
sancus_get_caller_id-like instruction to authenticate the client requesting the
service. Instead, a client module should pass a secret nonce with every request and
provide an entry point where SMsfs can call back to ask for acknowledgement that
the client has indeed requested a service from SMsfs with that nonce. This would
impose a serious performance overhead since switching protection domains comes
at a cost, as discussed in Sect. 4.3.1. Trustlite’s hardware logic could of course
be extended to provide a sancus_get_caller_id alike or SMsfs could agree on a
secret session token with its client during the initial mutual authentication phase.
An advantage of the Trustlite architecture on the other hand is its native support for
multiple private sections per protection domain. This allows SMsfs to incorporate
the MMIO regions of the flash drive as well as another region for its private data
and stack in its protected memory section, eliminating the need for a separate flash
driver SM as introduced in Sect. 4.2.5.

Strackx et al. [49] propose to use a trusted software module, referred to as the
vault, to securely offer persistent storage for client modules. The vault is similar to
SMsfs in that it stores secret data on behalf of its clients and guarantees to only
return data to the module that initially saved it, but does not feature logical file
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sharing between client modules. Strackx et al. [49] introduce the vault to be able
to initialise the private data section of a module when it is (re)loaded. The vault
therefore supports persistent storage across system reboots. To do so, they (i) encrypt
and sign all data on the untrusted persistent storage device with a cryptographic
key that is only known by the vault, (ii) base client authentication on the long-term
identity (including a hash of the code section and layout information), and (iii) trust
part of the software boot process to automatically load the vault and provide it with
its secret key. Remark that these strategies and their downsides were discussed in
Sect. 4.4.3.

4.5 Conclusion
This chapter presented a protected file system SMsfs module that builds upon
Sancus’ existing hardware primitives to construct a software layer that realises logical
file access control guarantees for client SMs. The trust relationship between SMsfs

and its clients differ significantly from a traditional omnipotent OS kernel for two
major reasons: (i) clients can authenticate SMsfs reliably, and (ii) clients only rely
on SMsfs for its dedicated file system task.

In a broader perspective, the prototype demonstrates the feasibility of supple-
menting the hardware-enforced security properties offered by PMAs with SM-grained
access control guarantees for a common system resource through a lightweight pro-
tected software TCB. The access control approach discussed above is quite generic
and can be implemented on other PMAs, or employed to control access to resources
other than a file system. As such, this chapter has shown how a protected module
could represent more than the unit of memory protection, but also the unit of secure
resource sharing.

The resource sharing approach of this chapter presupposes that the resource can
be encapsulated through the memory address space. Securely sharing of the more
abstract CPU time resource is discussed in the next chapter.
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Chapter 5

Secure Scheduling

This chapter presents a protected scheduler for the Sancus platform [40]. The
scheduler is encapsulated in its own SMsched protection domain and realises a form
of cooperative multitasking where logical threads execute in the protected single-
address-space. As such, this chapter implements a typical OS responsibility without
introducing a privileged omnipotent kernel software layer. The protected scheduler
supplements the hardware-enforced memory protection guarantees for SMs with
availability guarantees for logical threads.

This chapter is organised as follows. Section 5.1 first reviews existing ideas and
challenges for implementing multithreading in a single-address-space with fine-grained
standalone protection domains. Thereafter, Sect. 5.2 introduces a multithreading
scheme for the Sancus architecture and Sect. 5.3 presents the accompanying secure
scheduler SMsched implementation. Section 5.4 discusses the security and availability
guarantees of the scheduler prototype and compares the approach to other PMAs.
Section 5.5 finally concludes.

5.1 Threading in a Protected Single-Address-Space

A logical thread represents the unit of execution within an address space. A thread
corresponds to a call stack representing the control flow and local variables. Multiple
such flows of control may execute in the same address space, allowing shared data
between them. Threads should not be confused with processes representing conven-
tional OS entities, each with its private virtual address space. In a conventional
multiple-address-space OS [46, 4] a process represents the unit of protection whereas
a thread represent the unit of execution within such a protection domain.

To represent control flow in a single-address-space, one thus only needs the
concept of logical threads, not processes. It is however not clear how these threads
relate to any fine-grained protection domains in the shared address space. The
following sections therefore review existing approaches to realise threading in a
protected single-address-space to arrive at some basic notions for multitasking in a
hardware-enforced PMA.
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5.1.1 Opal Approach

The Opal [8, 9] single-address-space OS features logical threads executing in a shared
address space with fine-grained protection domains. An Opal protection domain
corresponds to an ACL with capabilities for memory segments. As opposed to a
conventional OS thread that executes in a process’s private address space, an Opal
thread may run through multiple protection domains. At all time, an Opal thread is
associated with one protection domain that defines its current memory access rights.
In other words: “A protection domain is an execution context for threads, restricting
their access to a specific set of segments at a particular instant in time.” [9]. Threads
may switch protection domains by invoking a system call to the Opal kernel. Such a
system call continues the thread’s execution at the predefined entry point of the new
protection domain.

By decoupling the unit of execution from the unit of protection, Opal shows
the feasibility of multiple memory protection contexts within a single thread’s
lifetime. This opposes to traditional private-address-space systems where a process
can have multiple threads, but a thread cannot span multiple processes. Indeed,
processes can only communicate indirectly by passing messages via Inter-Process
Communication (IPC) techniques. In these systems, there is no notion of continuing
execution in another protection domain.

5.1.2 Trustlite Approach

Trustlite [30], introduced in the Sect. 3.2, is a PMA that realises hardware-enforced
protection domains, called trustlets, in a single-address-space. Trustlite’s threading
model regards a trustlet as a protected standalone task, “designed and believed to
implement a particular security mechanism” [30]. A trustlet has a single internal
protected call stack, and is therefore monothreaded. Interestingly, Trustlite offers
a modified hardware interrupt engine that allows secure interruption of trustlets
with a zero-software TCB. On interrupt and before jumping to the untrusted ISR,
the hardware saves the program counter, stack pointer and CPU registers in the
protected data section of the trustlet. The secure hardware interrupt engine thus
ensures that even in the presence of interrupts, a trustlet solely depends on hardware
for integrity and confidentiality of its internal state. Such a set up allows an untrusted
preemptive scheduler to schedule trustlets in between normal unprotected tasks.

By considering a trustlet as a standalone task, Trustlite’s threading model differs
from that of Opal described above. Trustlite maps the trustlet as the unit of memory
protection on the unit of scheduling, as with conventional OS processes. This seems
to imply that calling a trustlet does not simply mean continuing the current thread’s
execution in another protection domain as in Opal. On the one hand, Trustlite
indeed categorises calling a trustlet as message passing IPC. On the other hand,
such a trustlet call in the single-address space simply comes down to “jumping to
the respective entry points with arguments in CPU registers” [30].

An important question in a preemptive scheduling environment, is what a previ-
ously suspended trustlet should do when receiving a new request. Since a trustlet has
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only one internal call stack, it cannot directly handle this request. In this respect, the
Trustlite paper mentions that a trustlet “may simply queue the signal in a message
buffer reserved in the trustlet data region” [30]. It remains unclear however what
should be done when this internal buffer fills up.

5.1.3 Intel SGX Approach

Intel SGX [36, 27], introduced in Sect. 2.2.3, is a set of hardware extensions for
high-end multiple-address-space computer architectures. SGX allows the creation of
hardware-protected enclaves within an application’s private virtual address space.
Such an SGX enclave is a standalone hardware-protected module with a public
interface and its own private call stack, heap and code section. Furthermore, SGX
features a hardware exception engine that allows secure interruption of running
enclaves by saving the state inside the protected section. SGX thus allows for an
additional fine-grained layer of hardware-enforced memory protection on top of the
coarse-grained virtual memory protection scheme managed by the untrusted OS.

SGX is not targeted at a single-address-space architecture, but offers enclave
protection domains in the single private address space of a process. Consider an
application with multiple threads, each wanting to use the enclave’s services in the
process’s virtual address space. Since enclaves can be interrupted, this situation
resembles that of Trustlite, described above. SGX however offers the concept of
multithreaded enclaves. To do so, SGX keeps a Thread Control Structure (TCS) data
structure per enclave, recording all thread-related meta data. Furthermore, SGX
offers EENTER, ERESUME, EEXIT and AEX processor instructions [27] to respectively
start a new enclave thread, resume an existing one and exit or interrupt the current
one. When invoking EENTER, one must supply the address of a TCS inside the enclave
to specify the logical enclave thread to be started. The enclave will subsequently
check that the specified TCS is not busy yet. An enclave thread is considered busy
from the moment it is started with EENTER until it is finished with EEXIT. A busy
thread that was interrupted with AEX can be resumed with the ERESUME instruction
that takes a pointer to a TCS as an argument.

SGX’s threading model resembles that of Opal in the sense that conceptually the
unit of execution – i.e. a thread inside a process’s virtual address space – may run
through multiple fine-grained protection domains. SGX however does not rely on
an omnipotent kernel software layer to switch protection domain. Indeed, enclaves
are (re-)entered via hardware instructions with a software-provided TCS thread
identifier argument [27]. SGX’s threading model differs from that of Trustlite since
(i) protection domains can internally be multithreaded, and (ii) enclaves are not
considered as separate tasks, rather as another protection context to continue the
current thread’s execution.

5.2 Threading and Control Flow in Sancus
From the above we can conclude that there are two major challenges to provide
multithreading in a Sancus-like hardware-enforced PMA. First, an omnipotent kernel
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software layer managing threads and their protection domains is inherently impossible
and undesirable as it would invalidate the zero-software TCB concept. SMs should
indeed exclusively rely on the hardware to retain confidentiality and integrity of their
internal state. Independent from these guarantees, SMs might trust a scheduler for
additional CPU availability guarantees. Second, the unit of logical threading in a
single-address-space does not coincide with the SM as the unit of protection.

Recall from Sect. 3.1.7 that Sancus allows calling an SM’s entry function from
unprotected code or from another module. Sancus thus already has the concept of a
single logical control flow thread running through multiple SM protection domains.
Assembly code stubs inserted at compile time take care of restoring the internal state
when switching hardware protecting domains. The essence of the multitasking model
presented in this chapter is to extend this monothreaded scheme to securely allow
multiple such control flows to exist simultaneously.

This section covers some general concepts that must be discussed before the
implementation of the protected SMsched module. The explanation is organised as
follows. Section 5.2.1 first provides an helicopter view of the threading model and
division of responsibilities between the scheduler and the individual participating
SMs. Section 5.2.2 thereafter resolves some remaining issues regarding control flow
integrity in the existing SM calling mechanism.

5.2.1 Threading Model Overview

As in the existing control flow model, Sancus threads will be allowed to run through
multiple SMs during their lifetimes. The scheduler only keeps track of logical threads,
each with their current SM protection domain where execution should be continued.
In terms of the threading models discussed in Sect. 5.1, this model resembles that of
Opal [9] in that SMs are regarded as an execution context for logical threads, and
contrasts that of Trustlite [30] since SMs are not considered as standalone schedulable
units.

In contrast to a conventional scheduler [46, 50], a scheduler for Sancus cannot save
the thread’s current state (i.e. CPU registers, stack pointer and program counter).
The thread’s internal state is in fact distributed over all the SMs that are part of it.
Recall from Sect. 3.1.7 that SMs indeed have their own private call stack and agree on
a protocol to call and return to each other. Sancus’ existing control flow model thus
already supports a single implicit logical thread that is not represented by a single call
stack – as in traditional systems – but by a private call stack per protection domain.
Dedicated code stubs executed when entering or exiting an SM are responsible for
saving and restoring private stacks. Logical control flow is thus jointly realised by
the participating SMs, whereas memory isolation and protection domain switching is
guaranteed by the Sancus hardware. As will be shown in Sect. 5.2.2 however, the
existing sm_entry procedure is not sufficient to enforce control flow integrity and
must first be extended accordingly.

The scheduler is only concerned with scheduling and relies on the cooperation of
individual SMs in three ways. First, due to the lack of a secure hardware interrupt
engine, SMs are expected to voluntarily hand over control to the scheduler from

50



5.2. Threading and Control Flow in Sancus

time to time. Second, SMs should guard the entry of their protection domains to
ensure control flow integrity. Third, SMs that are part of multiple logical threads
are responsible themselves to internally work for one thread at a time. They should
not mix the contexts of different logical threads on the same private call stack. SMs
should therefore be made threading-aware. How this is realised is explained in detail
in Sect. 5.3.3.

It is in the best interest of an SM to guard the entry of its protection domain
to ensure the integrity of its internal control flow. From a security perspective, a
non-cooperating SM can only harm itself or invalidate the control flow of the logical
thread that it is part of. The latter will be detected by other participating SMs and
cause the killing of the thread (as explained further on).

5.2.2 Sancus Control Flow Integrity

As explained in Sect. 3.1.7, SMs consist of a single physical entry point that executes
a short assembly code stub, referred to as sm_entry, to switch the private call stack
and to allow calling multiple logical entry functions. To do so, the Sancus compiler
assigns a logical eidx identifier to each entry function and generates the sm_entry
stubs. Next, the compiler replaces all calls to such functions with a jump to the
physical entry point, providing the eidx and return address via fixed CPU registers.

Nothing stops an attacker from calling the physical SM entry point himself
however, providing arbitrary values in the CPU registers. The sm_entry assembly
stub should therefore properly check its arguments. If any argument value is clearly
wrong, the caller is disobeying the SM entry protocol and should not be allowed to
enter. The following explains the different kinds of illegal arguments, how they can
be detected and how to respond to such an entry violation.

Remark that the use of the term “control flow integrity” in this chapter differs
from the traditional concept. Abadi et al. [1] introduce control flow integrity as a
mitigation technique that inserts runtime code checks to ensure execution adheres to
a valid path in a precomputed control flow graph. While the techniques introduced
in this section rely on runtime checks at the boundaries of protected modules, they
do not use a control flow graph.

Logical Function Index Out of Bounds

A straightforward entry protocol violation is to provide an illegal eidx. Since this is
an index in a fixed-sized lookup table, one can easily verify it is within bounds, as
has already been done in the existing sm_entry code stub.

Arbitrary Return Address

The caller is expected to provide the return address where execution should be
continued when the module being called has finished. Since the existing sm_entry
code stub does not check this address, an attacker is able to execute arbitrary code
within the module being called. Indeed, the last instruction that is executed in
the callee SM is an unconditional jump to the provided return address. Since this
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instruction is executed from within the module, jumping to an internal address is
allowed by the hardware-enforced program counter based access control rules.

As an example of such an attack, consider the secure file system SMsfs module
from Chapter 4. Recall that the module consisted of a public front-end access
control layer, controlling access to a private back-end API. An attacker might bypass
the access control layer as follows. First, he figures out the address of the private
back-end helper function that he needs and moves this address in the corresponding
CPU register. Next, he jumps to SMsfs’s physical entry point, providing a valid
eidx of an arbitrary logical entry function via the corresponding CPU register. The
front-end entry function being called will perform the necessary access control, deny
access to the back-end and jump to the provided return address. By providing the
address of a back-end function, the attacker thus ensures execution is continued as if
the front-end allowed access. Two things should be noted here. First – in the absence
of buffer overflows and other well-known [18] low-level security attacks – the attacker
has no control whatsoever over the callee SM’s internal call stack. The attacker can
only jump to arbitrary code once, by providing the return address to the sm_entry
stub. This implies that he cannot mount a return oriented programming attack [45].
Second, the attacker has no direct control over the argument CPU registers on the
moment of the return call. They will either be cleared or contain a return value from
the entry function.

From the above, it should be clear that it is in the best interest of an SM to verify
the provided return address. To do so, the callee can employ the existing Sancus
hardware primitives, introduced in Sect. 3.1.5, as follows. The SM being called first
retrieves the caller’s smid with the sancus_get_caller_id instruction. Thereafter,
the callee uses the sancus_get_id instruction to retrieve the smid of the SM that
owns the return address. The callee then simply compares these smids to make sure
the provided return address is indeed owned by the caller.

Since every protected module should have its own call stack, providing a continua-
tion address when calling a module is a general technique that is used by many PMAs.
In this respect, Agten et al. [2] present a compilation scheme that preserves the
security guarantees of a program expressed in a Java-like language when compiled to
a low-level PMA featuring program counter based access control. Their compilation
process inserts runtime checks at the boundaries of protected modules, analogous to
Sancus’ compiler-generated stubs described in Sect. 3.1.7. Agten et al. [2] preserve
integrity of the control flow by verifying that an externally supplied address always
lies outside the module’s memory bounds. Remark that their countermeasure is
analogous to the one of the previous paragraph, but that the sancus_get_caller_id
instruction allows for a stronger assurance. That is, the countermeasure introduced
in this section ensures that the return address is owned by the caller, whereas the
approach of Agten et al. [2] only ensures that the return address is not owned by
the callee. From a security perspective both options are sufficient, but the latter
allows to “return” into a module that has no open return entry point. This scenario
is discussed in the next section.
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SM_BarSM_FooSM_A

1.1.1: illegal return to A

1.1: call_bar
1: call_foo

Figure 5.1: SMbar bypasses SMfoo by abusing an open entry point at SMa

Abuse of Open Return Entry Points

As explained in Sect. 3.1.7, the SM entry protocol uses a special eidx identifier to
re-enter an SM after calling an external function. The existing sm_entry assembly
stub does however not verify that (i) the SM being re-entered has indeed called an
external function, and (ii) the calling SM is the one that was called.

An attacker might thus violate the entry protocol by calling an arbitrary SM
with the special return eidx. This will result in unpredictable behaviour, as it is not
even sure the callee SM is waiting for such a return. More subtle attacks that violate
control flow integrity are also possible. Figure 5.1 for example depicts a situation
where a malicious SMbar module abuses an open entry point at SMa, bypassing the
intermediate SMfoo module. SMa is unaware of this bypass and believes SMfoo has
returned. The SMfoo module is left with an open entry point, waiting for SMbar to
return.

To detect such control flow integrity violations, an SM should be able to tell on
every re-entry (i) whether it has called an external function, and (ii) the smid of
the last called module. The first requirement can be verified by inspecting whether
the module’s private call stack is empty. Indeed, as explained in Sect. 3.1.7, the
compiler automatically inserts an sm_exit assembly code stub on every external
function call to store all registers and save the private stack pointer before exiting
the module. Simply verifying whether the stack pointer points to the stack’s fixed
base address on re-entering, therefore suffices to verify the SM is indeed waiting
for a return. The second requirement can be fulfilled by employing existing Sancus
hardware instructions as follows. First, the calling SM’s sm_exit stub is modified to
save the smid of the module it is about to call on top of its private stack. This smid
can be retrieved by the sancus_get_id instruction with the callee’s address as an
argument.

When re-entering an SM with the special return eidx, the callee first checks
whether the stack is empty. If so, the caller clearly violates the entry protocol. If not,
the smid of the SM that is expected to return is saved on top of the stack. The callee
can thus pop this smid and compare it with the result of the sancus_get_caller_id
instruction to ensure control flow integrity.

The secure compilation scheme proposed by Agten et al. [2] includes a coun-
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termeasure that prevents “returning” into a module that has no open entry point.
To do so, their compiler initialises a module’s private call stack with the address
of an internal function that halts the system. Since the internal return address is
popped from the stack, execution is halted on an illegal re-entry. Observe that this
countermeasure is analogous to checking whether the private call stack is empty
when re-entering a module. Agten et al. [2] presuppose a single protected module for
their secure compilation scheme. They therefore do not have to consider the more
subtle attack where control flow integrity is violated by bypassing an intermediate
module. They do however acknowledge that “new attack vectors might exist due to
the increased complexity of multiple interacting modules” and that “new compiler
measures would have to be installed, to protect against these new attacks” [2]. The
countermeasure presented in this section can well be considered as an example of
such a new compiler measure, relying on the sancus_get_caller_id instruction

Reporting Entry Violation to the Scheduler

The above sections explained how SMs should guard the entry of their protection
domain by validating the provided arguments. They did not yet discuss how SMs
should react to these entry violations. Clearly, a caller disobeying the entry protocol
should not be allowed to enter and execution should stop. In a non-scheduling
environment, the callee may simply go into an infinite loop. In a multithreaded
environment, it would be desirable to halt the currently executing thread, without
affecting others. To do so, the SM that denies access should keep its internal state
consistent and inform the scheduler of the entry violation. The scheduler in its turn
should forget about the currently executing thread, since this thread has halted at
the reporting SM.

To be able to securely call the scheduler from within an sm_entry assembly
code stub, one needs SMsched’s (i) load address, (ii) smid, and (iii) desired eidx
entry function identifier. Since these values are only known when the SMsched

module has successfully been loaded, SMs should be informed of them at run time.
For this purpose, all SMs keep fixed locations within their private data sections
to store this information. These locations are given symbolic names by the linker
script, so that they can be initialised from a standard C entry function. This
function simply fills in the corresponding symbolic values and retrieves the smid
using the sancus_verify_address instruction and a MAC of SMsched, as explained
in Sect. 3.1.4. The main function calls this initialisation function for each of the
participating SMs, after SMsched has been enabled and before starting the scheduling.
Appendix A includes a simple C code example that illustrates this initialisation
process in a static deployment scenario (where the participating SMs are statically
linked against SMsched before being sent to the node).

When provided with the above values, an SM detecting an entry violation will first
verify whether the scheduler is still loaded correctly at the expected address. This
can be accomplished by passing the stored scheduler address to the sancus_get_id
instruction and comparing the result with the stored smid. If the scheduler is not
present, something has clearly gone wrong and the detecting SM has no choice but
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to go into an infinite loop. In the other case – when SMsched has successfully been
verified – the detecting SM can simply jump to its entry point with the desired
logical entry function eidx in the correct CPU register.

5.3 Implementation of a Protected Scheduler

This section presents the implementation of the protected scheduler module. The
scheduler is encapsulated in its own SMsched protection domain and realises cooper-
ative multitasking where multiple logical threads share a single CPU and protected
single-address-space.

The explanation is organised as follows. Section 5.3.1 presents the interface of
the SMsched module and Sect. 5.3.2 discusses how the scheduler internally repre-
sents logical threads. Thereafter, Sect. 5.3.3 presents the idea of threading-aware
protection domains that ensure internal consistency in a multithreading environment.
Section 5.3.4 finally explains how the scheduler manages to interweave the execution
of multiple logical flows of control.

5.3.1 Scheduler Interface

Table 5.1 summarises the interface of the protected SMsched module. The functions
fall down in three categories. A first kind of functions allow the main thread to set
up and start the scheduler. Functions of the second category are used by individual
SMs to participate in the scheduling process. The third function category consists of
private helper functions that make the actual scheduling decisions.

Table 5.1: Overview of the interface offered by SMsched. The “main” rows contain
functions to set up the scheduler. The “SM” rows correspond to functions used by

participating SMs. The “SMsched” rows are private helper functions.

Used By Function Description
main register_thread_portal Provide entry function of new thread.

start_scheduling Run previously registered threads.
SM yield Hand over control to scheduler.

report_entry_violation Control flow integrity has been violated.
get_cur_thr_id Return the current thread id.

SMsched finish_get_next Current thread is done, return next one.
yield_get_next Suspend current thread, return next one.
kill_get_next Kill current thread, return next one.

Recall that logical threads might run through multiple protection domains. The
first of these, the SM where the thread started, is referred to as its portal. The main
function can use the register_thread_portal function to provide the scheduler
with such a new logical thread, to be started later. This function expects the portal
SM’s address, smid and logical eidx entry function identifier to start the thread.
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When all logical thread portals are registered this way, the main function calls
the start_scheduling function. The scheduler then runs all registered threads
according to its internal scheduling policy and returns to the main function when all
registered threads have finished.

As already mentioned above, individual SMs are expected to cooperate in the
scheduling process in three ways. First, by calling the yield function they voluntarily
hand over control to the scheduler, which might decide to run another logical thread
and continue this one at a later time. A second way in which SMs participate in
the scheduling process, is by reporting an entry protocol violation, as introduced in
Sect. 5.2.2. This can be accomplished with the report_entry_violation function
that kills the currently executing logical thread. Finally, the scheduler offers a
get_cur_thr_id function that returns a unique identifier for the currently executing
thread. This will be used in Sect. 5.3.3 to realise threading-aware protection domains
that internally separate the call stacks of different logical threads.

The last category of scheduler functions consists of private helper functions that
can only be called from within the SMsched module. These functions are used to
decide which logical thread to run next and thus make up the scheduling policy.
Section 5.3.4 explains them in more detail.

5.3.2 Scheduler Internals

The following describes how SMsched internally keeps track of logical threads and
their currently executing SM protection domain.

Logical Thread States

Figure 5.2 depicts the different states that a logical thread might be in during its
lifetime and the possible transitions between them. All threads start in the “registered”
state, after they are created through the register_thread_portal function. The
associated protection domain for a thread in this state is always the corresponding
portal SM. When the scheduler select the thread and starts it through its portal,
the thread is said to be “running”. Since the prototype features a single embedded
CPU, there is always at most one logical thread in the “running” state. When the
currently executing SM calls the yield function, the current thread is suspended
and moves to the “ready” state. The associated protection domain in this state is
the SM that just yielded, which can be any SM that is part of the logical thread.
At a later time, the scheduler might decide to continue the thread, which is then
again said to be “running”. To continue a logical thread’s execution, the scheduler
simply jumps to the address of the SM that called the yield function with the
special return eidx in the corresponding CPU register. From the point of view of
the SM, it seems as if the scheduler just returned from the yield call and nothing
happened in between. When the portal SM finally returns to the scheduler, the
current thread is considered “finished”. Recall from Sect. 5.2.2 that an SM may call
the report_entry_violation function to indicate it has been entered incorrectly.
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Figure 5.2: Logical thread states and their transitions as recorded by the scheduler

When this happens, the scheduler forgets about the currently executing thread and
it is said to be “killed”.

Data Structures

SMsched stores all internal data structures in its protected data section. The scheduler
maintains a pointer to the currently executing thread and a ready queue with
“registered” and “ready” threads. A logical thread is represented by a thread control
block that contains a unique thrid identifier and information on its current SM
protection domain. More specifically, the implementation keeps track of the associated
SM’s entry address and logical eidx entry point. For “registered” threads the eidx
corresponds to the logical entry function of the portal SM to start the thread. For
“ready” threads, the eidx is always the special return entry index. This allows the
implementation to continue execution of a logical thread by simply jumping to the
corresponding entry address, with the eidx in the agreed CPU register.

Since Sancus’ hardware logic imposes a fixed-sized private data section, SMsched

should fulfil its own dynamic protected memory requirements. Analogous to the
protected file system implementation of Sect. 4.2.3, SMsched pre-allocates a fixed
number of thread control blocks at compile time and maintains them in a free list at
run time. This implies a configurable maximum number of logical threads that can
be managed simultaneously by the SMsched prototype.

5.3.3 Threading-Aware Protection Domains

Different logical threads may use the services of the same SM. Consider for example
the protected file system module SMsfs from Chapter 4. If SMsfs is executing for
logical thread A and yields to the scheduler, another thread B might want to use
its services. In this case, SMsfs should however not mix the execution contexts of
different logical threads on the same private call stack. Imagine for example that
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SMsfs simply pushes the call context of thread B on top of that of thread A. If the
file system then yields to the scheduler once more, thread B will be continued instead
of thread A since it is on top of the call stack. To ensure control flow integrity in a
multithreading environment, SMs should therefore be made threading-aware.

As explained in Sect. 5.1.3, Intel’s SGX [36] architecture features multithreaded
enclave protection domains. SGX enclaves also separate the local execution contexts
of these logical threads. To do so, SGX enclaves internally store the thread’s meta-
data in a TCS data structure and demand the caller to specify the address of such a
TCS as an argument when entering the enclave. In the case of the Sancus architecture
with a single embedded CPU however, there is always at most one logical thread
running. The logical thread should therefore not be specified explicitly when entering
an SM, as this will always be the “currently executing thread”. The SMsched module
therefore provides participating SMs with the possibility to retrieve a unique thrid
identifier for the currently executing thread via the get_cur_thr_id function.

The key idea to realise threading-aware SMs is to retrieve the current thrid as
part of the SM entry procedure. The thrid, uniquely identifying the current logical
thread, then also defines which internal private call stack should be used to save
execution context in the current protection domain. The prototype implementation
only features a single call stack per SM, but due to the generic thrid scheme, SMs
can in principle store execution context for more logical threads on multiple internal
call stacks. In the case of a single private call stack, SMs should be executing for at
most one logical thread at all times. This is referred to as internal monothreading.

To ensure internal monothreading, the sm_entry assembly code stub from
Sect. 5.2.2 should be extended once more. Participating SMs store the unique
thrid of the logical thread that they are executing for (if any) at a fixed location in
their private data section. Recall that a participating SM already stores the sched-
uler’s address and smid. To be able to securely retrieve the thrid of the currently
executing logical thread, it thus also needs to store the logical eidx identifier of
the get_cur_thr_id function. Provided with the internal thrid and the thrid of
the currently executing thread, an SM being entered first checks whether its single
private call stack is empty. If so, the module was not executing for a logical thread
before it was entered. The module can thus safely be entered and its internal thrid
is replaced with the current one. If not, the SM being entered is currently already
executing for a logical thread and can only safely be entered when its internal thrid
matches the current one. If this is not the case, the callee SM is currently storing
control flow context for a partially completed logical thread that is different from
the currently executing one. As the callee has no internal call stacks left, it cannot
safely allow entrance into its protection domain. In this case, the callee’s sm_entry
code stub returns a magic value in an agreed caller-saved CPU register to indicate
that it is currently busy. The sm_entry assembly code stub of the calling SM should
therefore check the agreed CPU register for the magic busy value on every re-entry
from an SM call. If the callee indicated that it is busy, the caller should retry the
call at a later time. In this case, the caller’s sm_entry stub saves state on its internal
call stack and calls the scheduler’s yield function to suspend the execution of the
current logical thread. When the caller is continued at a later time, its sm_entry
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stub will automatically retry the call.
From a C programmer’s perspective, the above concept of internal monothreading

is completely hidden by the compiler-generated sm_entry assembly code stubs. The
same goes for the control flow integrity checks from Sect. 5.2.2. The Sancus compiler
thus always generates cooperating SMs that ensure internal consistency. Remark
that it is in the best interest of an SM to guard the entry of its protection domain
and ensure internal consistency. A hand-crafted malicious module can only harm
itself or the overall control flow integrity of the logical thread that it is part of.

5.3.4 Logical Thread Switching

As mentioned above, the currently executing thread might return from its portal
entry function to indicate completion, or call the yield function to suspend itself.
Moreover, an SM might call the report_entry_violation function at all time to
indicate the current thread should be killed. To make this all work, SMsched employs
a custom sched_entry assembly code stub that intercepts these calls and translates
them to the private C helper functions from Table 5.1. In essence, these helper
functions make the actual scheduling decisions. They mark the current logical thread
accordingly and return the information needed to continue the next one via agreed
CPU registers to the sched_entry stub. More specifically, to start or continue a
logical thread from assembly code, the stub needs (i) the entry address of its portal
or currently executing SM, and (ii) the eidx that identifies the logical entry point in
this module. Since this information is stored in the thread control blocks that form
the ready queue, the C implementation may simply return the required information
to the the assembly stub after selecting the next logical thread to run.

Note that a dedicated sched_entry assembly stub is needed since SMsched cannot
build up local stack context when switching logical threads. The call stack should
indeed not grow so that when all threads have finished, SMsched can return to the
main function that initially called start_scheduling.

Appendix A includes the C source code and sequence diagram of a minimal
multithreaded program to illustrate logical thread switching behaviour, as well as
the threading-aware protection domains from the previous section.

Finishing the Current Thread

When the portal function that was initially called to start the current thread returns
to SMsched, the thread is considered finished. The sched_entry stub therefore inter-
cepts calls that specify the special return eidx to call the private finish_get_next
C helper function. This function marks the current thread as finished (i.e. forgets
about it) and chooses the next one from the ready queue. The SMsched prototype
schedules logical threads according to a simple first-in, first-out circular policy, but
in principle any scheduling policy (e.g. priority based) can be implemented here.
When the scheduling policy has chosen a thread control block from the ready queue,
the function returns the corresponding eidx and SM address to the sched_entry
assembly stub. If there are no logical threads left in the ready queue, the function
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returns a special value. The sched_entry stub now simply checks whether the
function returned information to start the next thread. If so, the stub moves the
eidx in the correct register and jumps to the provided SM’s entry address. If not, the
stub performs a normal return to the main function that called start_scheduling.

Remark that if the sched_entry stub would process all returns in this way, the
scheduler won’t be allowed to call any external function that is not the (re-)entry
point of a logical thread. The SMsched implementation however uses unprotected
library functions such as printf for debugging purposes. The sched_entry stub
therefore uses the sancus_get_caller_id instruction to retrieve the smid of the
calling protection domain, and allows normal re-entry from the unprotected domain.
This implies that in the prototype implementation, the unprotected domain cannot
act as the portal of a logical thread. Of course more flexible solutions are possible.
An internal boolean flag could for example be used to indicate whether or not a
logical thread is currently running.

Suspending the Current Thread

The currently executing logical thread may voluntarily suspend itself by calling the
yield function. From the point of view of the calling SM this is an ordinary function
and it continues normally when this call returns. To make sure execution is indeed
continued when restarting the suspended thread, SMsched should update the current
thread control block with the information of the yielded SM. The scheduler already
knows the eidx as it is the special return entry index and it can retrieve the smid via
the sancus_get_caller_id instruction. As with a normal function call, the caller’s
SM entry address is provided as the return address for the call via an agreed CPU
register. This will be the address where execution is continued when resuming the
current logical thread. It is therefore essential that the SMsched implementation
verifies this address is indeed owned by the caller with the sancus_get_id instruction,
as explained in Sect. 5.2.2. If this verification fails, the current thread is disobeying
the entry protocol and cannot be continued. The implementation then simply forgets
about it, as explained further on.

Analogous to the return entry point interception discussed above, the sched_entry
stub intercepts all yield entries to call the private yield_get_next helper function.
This function updates the current thread control block with the calling SM’s infor-
mation, as discussed above, and appends the thread control block to the ready queue.
Thereafter, the C implementation selects the next logical thread to run and returns
the necessary information to continue the thread’s execution to the sched_entry
stub.

Killing the Current Thread

As explained in Sect. 5.2.2, additional integrity checks are performed when entering
an SM and a module may use the report_entry_violation function to signal it has
been entered incorrectly. Analogous to the above, the sched_entry stub intercepts
these calls and translates them to a private kill_get_next call. This C helper
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function makes the scheduling decision and returns information to continue the next
logical thread, if any.

Since the integrity of the control flow of the current thread has been violated, it
cannot be continued any more. Recall that a logical Sancus thread consists of the
collection of all private call stacks of its participating modules. To actually kill a
logical thread system-wide, all these call stacks should be cleared. Since SMsched is
not privileged in any way – as opposed to a traditional OS kernel – it cannot kill
logical threads this way. The implementation therefore simply removes the current
thread control block, so that it will not be assigned CPU time any more.

Terminating logical threads in this way has two implications. First, any cur-
rently executing SM (including the unprotected domain) is allowed to call the
report_entry_violation function. While this has obvious availability implications,
it also conforms to the model where a caller verifies and trusts a callee. Indeed, when
calling an SM correctly, one expects that it accepts the call and returns eventually. A
malicious module might on the contrary report an alleged violation to the scheduler,
resulting in the termination of the currently executing thread. The key thing to note
here however, is that this can only be done by modules that are explicitly called
by some module in the logical thread and thus also form part of the logical control
flow. At all times times only the currently executing thread can be killed. This
implies that a logical thread A can never cause the killing of a logical thread B.
By carefully deciding which modules to call and by guarding their entry, one can
therefore construct a secure logical control flow that will always be allowed to run,
independent from any other threads being scheduled.

A second consequence of the possibility to kill logical threads in the scheduler
concerns the individual participating SMs. Recall from Sect. 5.3.3 that SMs are
threading-aware and make sure that their internal private call stack only builds up
context belonging to the same logical thread. When abruptly terminating the current
thread, some of its participating SMs will be left with a partial call stack. Since
the SMsched implementation makes sure it never re-uses thrids, the participating
modules will never continue the control flow represented by these partial call stacks.
While this is indeed desirable from a control flow integrity point of view, it may also
result in a deadlock. Figure 5.3 depicts such a situation where the gray logical thread
consists of an SMfoo module that calls an SMbar module which illegally calls SMa.
This last module detects the entry violation and informs the scheduler, which forgets
about the gray thread and start the white one. The previously mentioned SMfoo

module is however unaware the gray thread has been killed and therefore indicates
that it is busy when the white thread wants to use its services. The essence of the
deadlock is that SMfoo keeps a private call stack that waits for SMbar to return,
which will never happen.

The current prototype does not recover from such a deadlock, but control flow
integrity will never be jeopardised. In the above example, SMa will continuously
retry to call SMfoo that keeps indicating it is busy. Avoiding the deadlocked situation
is certainly possible, but requires extending the threading-aware protection domain
approach from Sect. 5.3.3. Consider for example changing the definition of the
get_cur_thr_id function so that it takes the locally saved thrid of the caller as an
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SM_sched SM_ASM_BarSM_Foo

5: report_entry_violation

6: kill_get_next
7: startA

9: get_cur_thr_id

10: cur_thr_id

1: startFoo

11: return busy

8: call_foo

4: integrity
check

3: illegal call
2: call_bar

Figure 5.3: Multithreading scenario resulting in a deadlock. The gray thread is
killed, but the participating SMfoo module is unaware of this and refuses subsequent
calls from other threads because it still has an open call stack for the gray thread.

argument. SMsched could then simply maintain a list of killed logical thrids and
check whether the calling SM provided one of them. If so, this implies it was part of
and still waits for a logical thread that is now killed. In such a case, the scheduler
may return a special thrid to indicate that the calling SM is allowed to clear its
entire current private call stack to participate in another logical thread.

5.4 Discussion

This section discusses the guarantees and limitations of the above threading model
and SMsched prototype. The approach is also briefly compared to that of other
PMAs.

5.4.1 Security Guarantees

The key thing to note from a security perspective, is that the SMsched prototype is
not privileged in any way. In contrast to a conventional OS scheduler, SMsched only
encapsulates the scheduling policy. It cannot and does not save the execution state
(i.e. program counter, stack pointer, CPU registers) of suspended tasks. Recall that
a logical control flow thread indeed corresponds to all the private call stacks of the
SMs that are part of it. Extending the sm_entry code stubs with integrity checks
further ensured that SMs rely exclusively on the PMA hardware and their private
implementation for the confidentiality and integrity of their internal control flow
and data. Participating SMs should only trust the scheduler to be guaranteed CPU
time. They should not incorporate SMsched or any other module in their TCB – as
opposed to a traditional omnipotent OS kernel.
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Participating SMs rely on the thrids provided by SMsched to properly separate
their internal call stacks. A misbehaving scheduler that returns false thrids can only
cause stack frames belonging to different logical threads to be intermixed on the same
private call stack. While this makes it impossible to state which thread is currently
executing, control flow integrity will never be jeopardised. To see why, recall from
Sect. 5.2.2 that the smid of the callee is pushed on the private call stack of the caller
before making the actual call. Consider a caller that builds up execution context
for another logical thread on top of its original call stack, due to a misbehaving
scheduler that returns an identical thrid. If the scheduler now continues the callee
that returns to the caller, an entry violation will be detected, since the callee’s smid
is no longer on top of the stack.

From the point of view of a participating module, yielding to the scheduler is a
normal external function call and “continuing” proceeds as an ordinary return entry
call. The control flow integrity entry guards from Sect. 5.2.2 that prevented an SM
from abusing an open entry point or “returning” into a module that has no open
entry point, therefore also enforce that SMsched can only continue SMs that have
previously yielded.

The above separation of concerns between the scheduler and the participating
modules furthermore allows for optimal flexibility. One could simply plug in another
SMsched implementation to realise a different scheduling policy. Moreover, as hinted
in Sect. 5.2.2, SMs can choose for themselves how many internal logical threads
they want to support by allocating multiple private call stacks. Multithreaded
protection domains might be useful for SMs that offer a service towards others, e.g.
the protected file system from Chapter 4.

5.4.2 Availability Guarantees

In terms of availability, the current prototype cannot make strong guarantees, due
to the lack of a secure hardware interrupt engine for the Sancus [40] platform. This
section therefore first discusses the availability guarantees that can be enforced by
the current prototype and thereafter elaborates on the requirements and implications
of extending the threading model with a secure hardware interrupt engine.

Cooperative Multithreading

The current prototype relies on the cooperation of individual SMs to voluntarily
transfer control to the scheduler. That is, logical threads are ensured processing
time on the condition that participating modules always yield at some time. Such
a cooperative multitasking scheme already allows for useful applications. Earlier
versions of TinyOS for example did not support a preemptive multitasking model [20,
29]. Without preemption however, a malicious or buggy module can easily launch a
Denial-of-Service (DoS) attack by for example executing in an infinite loop.

Section 5.3.4 discussed how the current thread may be killed through the
report_entry_violation function. It was argued that a logical thread A can
never cause the killing of another thread B and that the associated availability im-
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plications correspond to a model where a caller verifies and trusts a callee. This only
holds however for threads that do not execute in the unprotected domain. To see why,
consider a logical thread A that is executing in the unprotected domain and yields
to SMsched, which continues another thread B. Since (part of) A’s execution context
is stored on an unprotected call stack, thread B can easily modify the unprotected
control flow for thread A. Secure threads in the current prototype should therefore
never call unprotected code (e.g. libc functions).

An advantage of the Trustlite [30] architecture over the initial Sancus [40] ar-
chitecture is that the former can handle memory access violations by an untrusted
OS scheduler. Recall from Sect. 3.1.3 that the current Sancus hardware generates a
non-maskable interrupt and vectors to the predefined ISR on memory access violation.
The SMsched prototype presented in this chapter could therefore relatively easy be
extended to securely handle memory access violations as follows.1 First, a helper
module SMvector is created with a text section that contains the start address of
SMsched and an empty data section. Next, SMvector’s text section is wrapped around
the memory access violation entry in the interrupt vector table, which is at a fixed
location in the TI MSP430’s memory. This prohibits an attacker from changing
the ISR address where execution will be continued after a memory access violation
has been detected. Finally, SMsched’s sm_entry stub has to be modified so that it
recognises an entry resulting from a memory access violation. This can easily be
accomplished since the sancus_get_caller_id instruction returns a special value
when the previously executing module was interrupted. SMsched can now kill the
currently executing logical thread that attempted the memory access violation, as
explained in Sect. 5.3.4. Such a strategy thus allows that the Sancus architecture
not only enforces memory access rights, but also handles them gracefully – without
harming uninvolved SMs running on the same node.

Preemptive Multithreading

Section 3.3.2 compared Sancus’ hardware primitives to that of a minimalist micro-
kernel [33] and concluded that only a notion of threading seems to be missing. The
work presented in this chapter has shown that Sancus’ knowledge of the previously
executing module is sufficiently strong to realise control flow integrity, as discussed
in Sect. 5.2.2. To ensure strong real-time availability guarantees however, the Sancus
platform should be extended with a secure hardware interrupt engine and generate
non-maskable interrupts at fixed intervals. On such an interrupt, the hardware
should store the program counter and CPU registers on the current private call stack,
clear the CPU registers, save the stack pointer and vector to the SMsched module.
Sancus currently performs these operations by a compiler-inserted sm_exit stub
when calling an external function, as explained in Sect. 3.1.7. In this respect, the
yield calls in the current prototype simulate such an interrupt that transfers control
to SMsched. Implementing the sm_exit procedure in hardware is certainly possible
and has successfully been done by Trustlite [30] and Intel SGX [36]. Moreover, De

1 The technical details presented in this paragraph result from personal communication with
Job Noorman.
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Clercq et al. [14] describe a secure hardware interrupt engine that allows interrupting
a task in a secure domain and vectoring to a non-secure domain, or the other way
around.

An interesting future work direction would be to combine the Sancus threading
model presented above with a modified hardware interrupt engine to construct
secure logical control flows that will always be allowed to run, independent from
any other logical threads being scheduled simultaneously. Masti et al. [35] describe
such an embedded trusted scheduling architecture that ensures availability, even
in the presence of malicious applications. From a security point of view however,
their approach differs significantly from the one presented above in that they employ
an omnipotent “trusted domain” software layer that is responsible for initialising
the system and saving/restoring logical task state on context switch. Introducing
such a kernel software layer in Sancus would of course invalidate the concept of
hardware-protected SMs. Moreover, the SMsched prototype demonstrates that an
omnipotent kernel is not necessary to realise multithreading in a PMA.

Masti et al. [35] use an application-aware memory protection unit to enforce
isolation of different tasks. Their architecture raises an exception on memory violation
detection to transfer control to the protected domain. Furthermore, to be able to
realise strong availability guarantees, a hardware mechanism transfers execution
to the trusted domain at fixed time intervals. Analogously, the Sancus hardware
should branch to SMsched on a memory violation and at fixed time intervals through
non-maskable interrupts, as explained in the previous section.

Masti et al. [35] also allow a programmer to mark code sections as atomic. To
prevent an attacker from monopolising the CPU this way, they extend the hardware
with an atomicity monitor to enforce that atomic code sections do not exceed a
pre-set maximum length. An application that tries to execute an atomic code section
exceeding this maximum value will be killed. A preemptive Sancus scheduler will
certainly need to support such atomicity of code sections. An SM should for example
not be preempted before it has restored its private call stack and authenticated
its caller to ensure control flow integrity and access control restrictions such as
those for the protected file system of Chapter 4. Analogously, an SM should be
verified and called in a single atomic transaction, to avoid time-of-check-to-time-of-use
vulnerabilities [47, 48] where a module is unloaded after it is verified, but before it is
called.

Finally, Masti et al. [35] extend their availability guarantees with access control
guarantees for an embedded peripheral bus. This way, they can ensure the on-schedule
execution of critical applications, even in the presence of malicious applications and/or
peripherals. Section 4.4.2 discussed how the generic access control mechanism for the
file system could be employed to control access to a peripheral bus. The combination
of the access control mechanism from the previous chapter with the threading model
from this chapter could therefore provide SMs on a shared computing platform with
strong real-time guarantees, enforced through a minimal protected TCB.
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5.4.3 Comparison with Other PMAs

While the scheduler presented in this chapter was developed with the Sancus [40]
platform in mind, the secure threading model is quite generic. Since multithreading
is a known difficulty for PMAs, this section briefly contextualises the approach
presented in this chapter.

The multitasking model of the Trustlite [30] architecture was already discussed
in Sect. 5.1.2. The main difference with the model presented in this chapter is that
Trustlite maps the unit of execution on the unit of protection. That is, Trustlite
does not allow a thread of execution to span multiple protection domains. Instead,
they consider protected modules as separate schedulable tasks and describe inter-
module communication as Inter-Process Communication (IPC), which is usually a
term that denotes cross-address-space communication with the help of a trusted OS.
Trustlite features a single-address-space however, so calling a module comes down to
jumping to the corresponding address, as in Sancus. One could therefore argue that
logical threads that jump from module to module are the better option to represent
control flow in a single-address-space. As opposed to the threading-aware protection
domains introduced in this chapter, Trustlite’s rather inconvenient IPC scheme for
example requires a module to keep its own message buffers to queue subsequent
calls. The treading model and scheduler implementation presented in this chapter
could be ported to the Trustlite platform, on the condition that reliable and efficient
caller authentication is provided. I.e. Trustlite would have to be extended with a
sancus_get_caller_id alike hardware instruction.

Section 5.1.3 described the threading model of the SGX [36] architecture. SGX’s
threading model resembles that of this chapter in that protection domains are
threading-aware and can choose for themselves how many internal logical threads
they want to support. SGX is however intended for desktop and server computing
and logical threads are scheduled by the untrusted OS as usual.

The Fides [48] hypervisor architecture, described in Sect. 2.2.3, realises protected
modules in the virtual address space of a process through a separate secure virtual
machine. As opposed to Sancus, SMs in Fides are an additional means of protection,
isolated from the legacy OS. The legacy OS kernel remains responsible to schedule
legacy threads that might enter an SM. When entering a module, the hypervisor
pauses the legacy virtual machine and continues the execution of the current logical
thread in the secure virtual machine. The threading model presented in this chapter
is targeted at a single-address-space where SMs are the only means of protection,
and thus makes little sense for Fides. The control flow integrity checks of Sect. 5.2.2
would make sense, since Fides modules can call and return to each other. To the
best of the author’s knowledge however, Fides does not feature reliable and efficient
caller authentication, which is required to make sure that a callee only returns to its
corresponding caller.

Fides [48] is targeted at high-end multi-core processors, but does not allow the
concurrent execution of modules to avoid time-of-check-to-time-of-use vulnerabilities.
Since Trustlite [30] allows modules to be interrupted at all times, time-of-check-to-
time-of-use vulnerabilities could arise when interrupting a module that has verified,
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but not yet called another module. Trustlite avoids these concerns by not allowing
protected modules to be unloaded at run time.

5.5 Conclusion
This chapter presented a multithreading model and an accompanying protected
scheduler implementation for the Sancus [40] platform. The prototype allows multiple
logical control flow threads to co-exist simultaneously. Each such logical thread may
run through multiple SM protection domains during its lifetime. To realise this
in a secure way and without introducing an omnipotent kernel software layer that
governs the system, participating SMs are made threading-aware. They are solely
responsible for their internal control flow consistency, as enforced by guarding the
entry of their protection domain. The prototype hides these concerns completely
from the C programmer by small compiler-generated assembly code stubs.

The entry guards introduced in this chapter have furthermore resolved a number
of vulnerabilities in Sancus’ existing implicit control flow model and heavily rely on
Sancus’ caller authentication features.

Due to the lack of a secure hardware exception engine, the prototype does not
feature a preemptive scheduler. The presented multithreading model and SMsched

module do however demonstrate the feasibility of such a preemptive scheduling
environment that can enforce strong real-time availability guarantees. The prototype
indeed allows the construction of secure logical threads that run through multiple
fine-grained protection domains and that are conceptually isolated from each other.
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Conclusion

The introduction stated that small embedded devices are increasingly permeating
our daily lives, whereas they commonly lack conventional security mechanisms. The
success of these devices will therefore largely depend on the adequacy of novel
lightweight software isolation techniques. In this perspective, embedded hardware-
level PMAs [40, 30, 49] are a promising research direction as they allow efficient
isolation of protected modules in a single-address-space. Without additional support
however, hardware-level PMAs seclude software modules in their respective protection
domains. That is, a protected module should either fulfil its own needs or rely on the
services of an untrusted OS to interact with the outside world. This master’s thesis
has shown that the hardware-enforced security properties for protected modules can
be extended with software-based availability and access control guarantees for shared
platform resources.

This chapter is organised as follows. Section 6.1 acknowledges the prototype
limitations and discusses the challenges that were encountered. Section 6.2 there-
after outlines future work directions and Sect. 6.3 concludes by summarising the
contributions of this master’s thesis.

6.1 Limitations and Challenges

This section acknowledges several prototype limitations and implementation obstacles.
First off, the work presented in this master’s thesis heavily relies on Sancus [40]

as the case study embedded PMA. While the underlying ideas of the access control
mechanism and scheduling model are quite generic, they inevitably rely on sufficient
hardware support. Sections 4.4.4 and 5.4.3 briefly discussed how the respective
approaches could be ported to other PMAs.

To arrive at the current protected file system, some implementation challenges
were encountered. Section 4.2.1 briefly discussed an early file system prototype
that was abandoned for several reasons. First, its internal UNIX-like inode-based
structure neglected flash-specific properties and was therefore barely usable for the
peripheral flash drive. Moreover, by storing access control meta data in the on-disk
inode table, the prototype anticipated persistent file protection, which turned out
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to be non-trivial. Finally, the move towards a layered architecture that separates
the access control logic from the actual file system implementation, allowed for the
lightweight front-end to be re-used for the protected shared memory implementation.

An important limitation of the current file system prototype is its lack of persistent
file protection. Several strategies to achieve persistence were discussed in Sect. 4.4.3,
but each of them has its own downsides and further research is needed to investigate
their performance and security implications.

The creation of meaningful macro benchmarks for the file system set up was
prevented because the Coffee [51] file system operates in the unprotected domain, as
acknowledged in Sect. 4.4.3. Protecting the Coffee file system was attempted, but
abandoned since Coffee’s micro logging code is buggy and uses features that are not
directly supported by the Sancus compiler.

The multithreading prototype also has several drawbacks. To start with, the
complexity of the compiler-generated assembly entry stubs is increased. Especially
since they have to link against the scheduler. While these stubs are hidden from
the C programmer, he still needs to provide the address, smid and eidxs of the
scheduler. Moreover, the get_cur_thr_id call on every entry decreases performance.
The current prototype furthermore neglects the unprotected domain, by not allowing
it to yield to the scheduler. Further research is needed to investigate the availability,
control flow and security implications of suspending and continuing the unprotected
domain.

6.2 Future Work

The secure access control mechanism as well as the secure threading model can be
improved in several ways.

Persistent File Protection A first future work possibility is to support persistent
file protection. Several strategies were discussed in Sect. 4.4.3, but further
research is needed to investigate their security and performance implications.
The application scenarios and desired security guarantees must thereby be
taken into account. To securely store a module’s state on untrusted storage,
existing work on state continuity [42] could be considered.

Hardware Support for Shared memory Section 4.3 revealed a considerable over-
head for the protected shared memory implementation. It was furthermore
showed that safely transferring data between SMs on a byte-per-byte basis
through CPU registers, is responsible for the majority of the access control
overhead. Native hardware support for a simple form of protected shared mem-
ory between a caller and a callee, as proposed in Sect. 4.4.4, could therefore
drastically improve performance of the protected file system.

SPI Bus Access Control Section 4.4.2 briefly discussed how the generic resource
sharing approach could be employed to control access to a SPI peripheral bus.
Limiting access to peripherals would be valuable to operate SMs under the
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principle of least privilege [44]. That is, a potentially malicious module is only
allowed access to the peripherals it is assigned by the access control policy. This
allows availability guarantees in the presence of malicious modules, analogous
to the approach of Masti et al. [35].

Multithreaded Protection Domains Section 5.3.3 explained how SMs were made
threading-aware and how they could feature multiple internal logical threads. In
the current prototype however, SMs execute for at most one thread at all times.
When adding support for multiple internal logical threads, the corresponding
call stacks should be properly separated. Moreover, support for mutexes should
be implemented to allow synchronisation of internal logical threads. Consider
for example a multithreaded protected file system where consistency of the
shared access control data structures is essential.

Hardware Exception Engine Section 5.4.2 discussed how extending Sancus’ hard-
ware logic with a secure hardware exception engine allows for a preemptive
scheduler. Such a scheduler can provide safety-critical embedded systems
with strong real-time availability guarantees, even in the presence of malicious
modules.

Atomicity Constraints Further research is needed to investigate the effect of
preemption on the correct execution of protected modules. It will thereby be
essential to provide adequate support for atomicity of code sections, while at
the same time preventing an attacker to monopolise the CPU time. A software
module should for example not be preempted before it has restored its private
call stack and authenticated its caller to perform the necessary access control
checks, introduced in Sect. 5.2.2. Other well-known [47, 48] multithreading
issues for PMAs include time-of-check-to-time-of-use vulnerabilities, where
thread A authenticates a module and is preempted before making the call. The
already authenticated module can now be unloaded in another thread B, so
that A jumps to unprotected code.

Suspending the Unprotected Domain A final consideration involves the secu-
rity implications of interrupting a thread that is executing in the unprotected
domain. While the unprotected domain could easily be made internally mul-
tithreaded, there is no way to enforce this separation. That is, anyone can
access the unprotected call stack of an interrupted thread, breaking logical
isolation of different threads. An attacker executing in thread B can indeed
influence the control flow of another thread A that was previously interrupted
in the unprotected domain. Further research is therefore needed to for example
isolate widely used libc functions in their own protection domain.

6.3 Contributions
This master’s thesis explored the possibility of securely implementing OS-like resource
sharing abilities on top of embedded hardware-level PMAs. Using Sancus [40] as the
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6. Conclusion

development platform, the following contributions were made:

• The minimal set of hardware primitives that need to be provided by a PMA to
securely allow the software implementation of OS-like services was identified.
These primitives are (i) memory isolation, (ii) module authentication, (iii) caller
authentication, and (iv) exclusive use of MMIO ranges. Especially efficient
caller authentication proved to be a prerequisite to implement access control,
as well as to realise control flow guarantees. Chapter 3 compared Sancus’
hardware primitives to those of a minimalist microkernel [33] and Chapter 5
identified the need to extend the hardware with a secure exception engine.

• Chapter 4 presented a protected file system implementation as a case study
of encapsulating and controlling access to a typical shared system resource.
The file system provides clients with the concept of a protected logical file
and realises flexible SM-grained access control policies. Two back-ends were
implemented, allowing access control to either a protected shared memory
buffer or a peripheral flash drive with the Coffee [51] file system. The security
guarantees and general applicability of the resource sharing mechanism were
discussed.

• Sancus’ existing implicit control flow model was secured by inserting extra
compiler-generated runtime checks at the boundaries of protected modules, as
described in Sect. 5.2.2.

• Chapter 5 furthermore presented a multithreading model and protected sched-
uler implementation to control access to the CPU time resource. The scheduler
decouples the unit of execution from the unit of protection by interweaving
the execution of multiple logical threads that might span arbitrarily many
SM protection domains. Moreover, SMs were made threading-aware so that
they only rely on the scheduler for availability guarantees and remain solely
responsible for their internal control flow and data. All these concerns are
completely hidden from the C programmer by compiler-generated assembly
code stubs.

The source code of the protected file system and the secure scheduler is publicly
available at https://github.com/jovanbulck/thesis-src.
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Appendix A

Complete Threading Example

This appendix presents a minimal, yet complete example of a multithreaded program.
As such, it demonstrates the protected scheduler from Chapter 5. Listing A.1 lists
the C source code of the example program. It defines two modules SMfoo and SMbar,
each serving as the portal of a logical thread. The main function first enables these
modules. Thereafter, it calls the set_foo_vars and set_bar_vars functions. These
functions initialise the private variables from Sects. 5.2.2 and 5.3.3 to be used from
the compiler-generated sm_entry assembly code stubs. To ensure secure linking
against the scheduler, these functions go into an infinite loop if SMsched was not
successfully verified.

The corresponding sequence diagram is shown in Fig. A.1 and illustrates threading-
aware protection domains. It shows how the scheduler first starts the light gray logical
thread through the SMfoo portal. When the current thread yields, the scheduler
starts the dark gray thread through the SMbar portal, which subsequently tries to
call SMfoo. This module is currently already executing for the light gray thread
and remarks through the scheduler’s get_cur_thr_id function that the currently
executing thread is the dark gray one. As explained in Sect. 5.3.3, participating SMs
have to ensure internal monothreading. SMfoo therefore returns the magic busy
value in the agreed CPU register. The calling SMbar’s assembly entry stub notifies
this and automatically yields to the scheduler, which continues the light gray thread.
When this thread finally returns, the dark gray one is continued. SMbar’s assembly
entry stub automatically retries the previous call, which succeeds this time since
SMfoo is not working for the light gray thread any more. Finally, SMbar returns to
the scheduler, which notifies all logical threads have completed their execution and
returns to the main function.

As demonstrated by Listing A.1, the control integrity and internal monothreading
guards discussed in Sects. 5.2.2 and 5.3.3 are completely hidden from the programmer.
They are indeed entirely implemented by the small assembly code stubs inserted at
compile time. The C programmer simply codes the logical control flow, using as
many SM protection domains as he likes, and finally identifies the logical threads
through their portal SMs.
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A. Complete Threading Example

Listing A.1: C source code of a simple multithreaded program

1 # include <sancus / sm_support .h>
2 # include " scheduler .h"
3
4 DECLARE_SM (foo , 0x1234);
5
6 void SM_ENTRY ("foo") set_foo_vars (void)
7 {
8 __sm_foo_sad = scheduler . public_start ;
9 __sm_foo_sid = sancus_verify ( SM_GET_TAG (foo , scheduler ), &

scheduler );
10 __sm_foo_vep = ( entry_idx ) &

__sm_scheduler_entry_report_entry_violation_idx ;
11 __sm_foo_yep = ( entry_idx ) & __sm_scheduler_entry_yield_idx ;
12 __sm_foo_gep = ( entry_idx ) &

__sm_scheduler_entry_get_cur_thr_id_idx ;
13
14 if(! __sm_foo_sid )
15 while (1) {}
16 }
17
18 void SM_ENTRY ("foo") start_foo (void)
19 {
20 // do things
21 yield ();
22 // do more things
23 return ;
24 }
25
26 void SM_ENTRY ("foo") call_foo (void)
27 {
28 // do things
29 return ;
30 }
31
32 DECLARE_SM (bar , 0x1234);
33
34 void SM_ENTRY ("bar") start_bar (void)
35 {
36 // do things
37 call_foo ();
38 // do more things
39 return ;
40 }
41
42 void SM_ENTRY ("bar") set_bar_vars (void)
43 {
44 __sm_bar_sad = scheduler . public_start ;
45 __sm_bar_sid = sancus_verify ( SM_GET_TAG (bar , scheduler ), &

scheduler );
46 __sm_bar_vep = ( entry_idx ) &

__sm_scheduler_entry_report_entry_violation_idx ;
47 __sm_bar_yep = ( entry_idx ) & __sm_scheduler_entry_yield_idx ;
48 __sm_bar_gep = ( entry_idx ) &
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__sm_scheduler_entry_get_cur_thr_id_idx ;
49
50 if (! __sm_bar_sid )
51 while (1) {}
52 }
53
54 int main ()
55 {
56 sancus_enable (& foo);
57 sancus_enable (& bar);
58 sancus_enable (& scheduler );
59
60 set_foo_vars ();
61 set_bar_vars ();
62
63 register_thread_portal (&foo , SM_GET_ENTRY_IDX (foo , start_foo ));
64 register_thread_portal (&bar , SM_GET_ENTRY_IDX (bar , start_bar ));
65
66 start_scheduling ();
67
68 while (1) {}
69 }
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Figure A.1: Sequence diagram of the program from Listing A.1 to demonstrate
threading-aware protection domains. For readability purposes, the figure only

visualises the relevant get_cur_thr_id call, instead of on every SM entry.
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